首页 | 本学科首页   官方微博 | 高级检索  
     

基于化合物库测试的gSpan算法
引用本文:许荣斌,谢莹,吴建国. 基于化合物库测试的gSpan算法[J]. 计算机技术与发展, 2007, 17(10): 58-60,64
作者姓名:许荣斌  谢莹  吴建国
作者单位:安徽大学,计算智能与信号处理教育部重点实验室,安徽,合肥,230039
摘    要:gSpan算法是一种基于频繁图的数据挖掘算法。该算法基于无候选人产生的频繁子图,采用深度优先搜索策略挖掘频繁连接子图。由于其设计结构具有连续性以及无候选人产生,算法的性能得以提高,在执行速度上可以达到前人算法如FSG算法的15~100倍。基于化合物库Chemical_340测试发现,该算法能够以卓越性能有效挖掘频繁子图。该算法可以应用在搜索具有相同子结构的化合物研究中,对相关领域研究发展具有重要意义。

关 键 词:化合物库  频繁子图  深度优先搜索
文章编号:1673-629X(2007)10-0058-03
收稿时间:2006-12-17
修稿时间:2006-12-17

The gSpan Algorithm Based on Compound - Library Testing
XU Rong-bin,XIE Ying,WU Jian-guo. The gSpan Algorithm Based on Compound - Library Testing[J]. Computer Technology and Development, 2007, 17(10): 58-60,64
Authors:XU Rong-bin  XIE Ying  WU Jian-guo
Abstract:Introduces a graph - based substructure pattern mining algorithm called gSpan, which discovers frequent substructures without candidate generation and adopts the depth- first search strategy to mine frequent connected subgraphs efficiently. Its performance is enhanced because the continuous design and non - candidate. When it is applied on the chemical compound - library Chemical_ 340, gSpan substantially outperforms previous algorithms such as FSG, sometimes by an order of magnitude, gSpan can be applied in the research of finding compounds with same substructure, it is very important to related areas.
Keywords:gSpan
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号