首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of the atmospheric transmittance and total water vaporcontent in the algorithms for estimating satellite sea surfacetemperatures
Authors:Sobrino  JA Zhao-Liang Li Stoll  MP
Affiliation:Lab. de Sci. de l'Image et de la Teledetection, Ecole Nationale Superieure de Phys. de Strasbourg;
Abstract:Sea surface temperature (SST) algorithms for NOAA AVHRR data can determine SST with rms values of 0.7 K on a global basis. However, this figure is not compatible with the high accuracy of 0.3 K required by climate studies. Biases in the SST product, arising when the factors that increase the optical path-length (absorbents concentration in the atmosphere or viewing angles) are large, cause problems in the use of the split-window formulation for climate monitoring. The reason is that the split-window coefficients currently used are not adequate to cover for all the atmospheric variability. To show this, simulations of channels 4 and 5 of AVHRR/2 of NOAA-11 using a radiative transfer model have been made. The range of atmospheric conditions and surface temperatures introduced in the simulation covers the variability of these parameters on a worldwide scale. From these data, the authors present new split-window coefficients that take into account the atmospheric variability through the ratio of the channel transmittances, or else through the total water vapor content along the path. They also show, using simulated and actual data, that the proposed split-window algorithm has a real global character and represents an improvement over the conventional algorithms
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号