首页 | 本学科首页   官方微博 | 高级检索  
     

基于相关向量机的小世界神经元网络拓扑估计
引用本文:郝崇清,王 江,邓 斌,魏熙乐. 基于相关向量机的小世界神经元网络拓扑估计[J]. 计算机应用研究, 2012, 29(11): 4082-4084
作者姓名:郝崇清  王 江  邓 斌  魏熙乐
作者单位:天津大学 电气与自动化工程学院,天津,300072
基金项目:国家自然科学基金资助项目(61072012, 61172009); 国家自然科学基金青年基金资助项目(60901035)
摘    要:采用相关向量机从含噪时间序列中估计小世界神经元网络的节点动力学方程和拓扑结构。在具有多项式结构或能以幂级数展开的动力学系统中,将未知方程写成统一多项式形式,原动力学方程的项在统一多项式中是稀疏的,利用稀疏贝叶斯学习估计出稀疏项从而实现动力学方程和拓扑结构的估计。利用该方法对FHN小世界神经元网络进行节点动力学方程和拓扑估计,结果表明,该方法能快速准确地估计节点动力学方程结构和网络拓扑,对动力学方程系数和网络耦合强度有很高的估计精度,而且对噪声有强鲁棒性。

关 键 词:小世界网络  相关向量机  动力学方程重建  拓扑估计  神经元模型

Estimation of small-world neuronal network topology based on relevance vector machine
HAO Chong-qing,WANG Jiang,DENG Bin,WEI Xi-le. Estimation of small-world neuronal network topology based on relevance vector machine[J]. Application Research of Computers, 2012, 29(11): 4082-4084
Authors:HAO Chong-qing  WANG Jiang  DENG Bin  WEI Xi-le
Affiliation:School of Electrical Engineering & Automation, Tianjin University, Tianjin 300072, China
Abstract:This paper applied relevance vector machine to estimate node dynamical equations and topology of small-world neuronal network from noisy time series. According to the fact that many dynamical equations or its power series expansion had polynomial structure, by constructing a unified polynomial and making the original dynamical equation sparse in the unified polynomial, obtained dynamical equations and network topology obtained while used sparse Bayesian learning to estimate the sparse nonzero terms. FHN small-world neuronal network as a paradigm demonstrated the estimation effect of the dynamical equations and network topology. The results show that the estimating strategy can identify equations structure and network topology accurately and quickly, the error is small in dynamical equations coefficients and couple strength estimation and is robust to noise.
Keywords:small-world networks   relevance vector machine   dynamical equations reconstruction   topology estimation   neuron model
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号