首页 | 本学科首页   官方微博 | 高级检索  
     


Practical optoelectronic neural network realizations based on thefault tolerance of the backpropagation algorithm
Authors:Allen  TJ Keng-Shen Hung Curtis  KM Orton  JW
Affiliation:Dept. of Electr. and Electron. Eng., Nottingham Univ.
Abstract:This paper describes how the fault tolerance of the backpropagation algorithm can be used to accommodate the realistic (nonideal) transfer characteristics of the optical communication links used, between neural layers, in optoelectronic neural networks. In particular the authors demonstrate that networks, utilizing MSM (metal-semiconductor-metal) photodiodes (PDs) and either LED (light emitting diode) or MQW (multiple quantum well) laser transmitters within these intraneural links, are capable of performing satisfactorily even in the presence of such nonideal device phenomena as: 60% optical crosstalk, 50% optoelectronic device variation, or a thresholded (I(th)=0.5*I(max)) laser output characteristic. Subsequent to this, the authors then show how it is possible to use this fault tolerance to simplify the neuron architecture, to the extent that it consists only of MSM PDs a current amplifier, and an MQW laser. The overall neuron transfer function is then a first-order approximation to the original sigmoidal function.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号