首页 | 本学科首页   官方微博 | 高级检索  
     

数据场典型相关分析及其在图像分割中的应用
引用本文:李文平, 杨静, 印桂生, 张健沛. 数据场典型相关分析及其在图像分割中的应用. 自动化学报, 2015, 41(4): 772-784. doi: 10.16383/j.aas.2015.c130896
作者姓名:李文平  杨静  印桂生  张健沛
作者单位:1.哈尔滨工程大学计算机科学与技术学院 哈尔滨 150001;;;2.嘉兴学院数理与信息工程学院 嘉兴 314001
基金项目:国家自然科学基金(61370083,61073043,61073041,61402126),高等学校博士学科点专项科研基金(20112304110011,20122304110012)资助
摘    要:针对数据场环境下多维数据的低维特征提取问题,本文将数据之间的相互作用纳入其相关性求解中,提出一种基于数据场的典型相关分析(Data field based canonical correlation analysis, DFCCA)方法. DFCCA提取的特征具有良好的分布特性,原空间上相隔较远的数据点对的特征聚集在一个较小区域内,而相邻数据点对的特征却有规律地分布在其他点所聚集区域的周围.此特性使得DFCCA具有较好的边界辨识能力,将其应用于图像分割的实验结果表明, DFCCA提取的复杂图像边界具有较好的保真度.

关 键 词:典型相关分析   数据场   特征提取   图像分割
收稿时间:2013-09-16
修稿时间:2014-11-21

Data Field Based Canonical Correlation Analysis and Its Application to Image Segmentation
LI Wen-Ping, YANG Jing, YIN Gui-Sheng, ZHANG Jian-Pei. Data Field Based Canonical Correlation Analysis and Its Application to Image Segmentation. ACTA AUTOMATICA SINICA, 2015, 41(4): 772-784. doi: 10.16383/j.aas.2015.c130896
Authors:LI Wen-Ping  YANG Jing  YIN Gui-Sheng  ZHANG Jian-Pei
Affiliation:1. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001;;;2. College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing 314001
Abstract:In this paper, for extracting low-dimensional features from multi-dimensional data in data field environment, we propose a novel method of canonical correlation analysis(CCA) called DFCCA(data field based CCA) by introducing interactions among data into data correlation solving. The features extracted by DFCCA have better distribution properties, that is the features corresponding to a data point pair that are far apart from each other gather together in a small region, but other features corresponding to the pair of data points that are neighboring each other will scatter regularly around the region. Thanks to these properties, DFCCA has a good capability of frontier identification. Experimental results on image segmentation demonstrate that the frontiers extracted from complex images by DFCCA hold better fidelity.
Keywords:Canonical correlation analysis(CCA)  data field  feature extraction  image segmentation
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号