首页 | 本学科首页   官方微博 | 高级检索  
     

基于语义指导和自适应卷积的遥感云检测算法
引用本文:徐梓川,龚晓峰. 基于语义指导和自适应卷积的遥感云检测算法[J]. 电子测量技术, 2024, 47(1): 136-143
作者姓名:徐梓川  龚晓峰
作者单位:四川大学电气工程学院
基金项目:四川省重点研发计划项目(2020YFG0051)、校企合作项目(21H1445)资助
摘    要:遥感卫星数据云检测分割是遥感影像处理中的重要环节,为了解决目前碎云薄云检测精度较低的问题,提出了一种采用基于高阶语义解码和自适应卷积编码的云检测方法。这种方法针对云团和碎云薄云之间的空间分布联系,提出了自适应卷积编码器来提取云团之间的关联信息。然后,使用高阶语义指导模块来解码语义特征,指导高分辨率的云掩码图生成。此外,这种方法还设计了一种动态联合损失函数,该损失函数通过动态计算样本中的漏检误检像素来构建权重,以引导神经网络关注碎云薄云特征,从而提高整体精度。实验结果表明,提出的算法在遥感图像上云分割能力可以达到96.5%的精确度和88.1%的交并比,可以很好地检测碎云薄云。

关 键 词:遥感图像  云检测  注意力机制  损失函数  深度学习

Cloud detection algorithm for remote sensing images based on semantic-guided and adaptive convolution
Xu Zichuan,Gong Xiaofeng. Cloud detection algorithm for remote sensing images based on semantic-guided and adaptive convolution[J]. Electronic Measurement Technology, 2024, 47(1): 136-143
Authors:Xu Zichuan  Gong Xiaofeng
Affiliation:College of Electrical Engineering, Sichuan University,Chengdu 610065, China
Abstract:Cloud detection of remote sensing satellite data is a crucial component in the processing of remote sensing images. To address the issue of low accuracy in detecting broken-clouds and thin-clouds, this paper proposes a novel cloud detection method that utilizes high-order semantic-guided decoding and adaptive convolutional encoding. The method leverages the spatial distribution relationship between the main cloud and broken-clouds by introducing an adaptive convolutional encoder to extract correlation information between the main cloud clusters. A high-order semantic-guided decoding module is then utilized to decode semantic features, thus restoring high-resolution cloud mask images. Moreover, a dynamic fusion loss function is designed to calculate the weight by dynamically computing the missed and wrong pixels in the prediction, guiding the network to focus on broken-clouds and thin-clouds, features, thereby enhancing the overall accuracy. Experimental results demonstrate that the proposed algorithm achieves an accuracy of over 96.5% and an intersection over union of over 88.1%, effectively detecting broken-clouds and thin-clouds.
Keywords:remote sensing image;cloud detection;attention mechanism;loss function;deep learning
点击此处可从《电子测量技术》浏览原始摘要信息
点击此处可从《电子测量技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号