首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of NH3 formation in desorption of Li–Mg–N–H storage system
Authors:Weifang Luo  Ken Stewart
Affiliation:

aSandia National Laboratories, MS 9403, 7011 East Ave., Livermore, CA 94551, USA

Abstract:Hydrogen energy may provide the means to an environmentally friendly future. One of the problems related to its application for transportation is “on board” storage. Hydrogen storage in solids has long been recognized as one of the most practical approaches for this. Recently the hydrogen storage system, (Li3N + 2H2  LiNH2 + 2LiH), was introduced by Chen et al. [P. Chen, Z. Xiong, J. Luo, J. Lin, K.L. Tan, Nature 420 (2002) 302–304. [1]]. This type of material has attracted a great attention of the researchers from the metal hydride research community due to its high reversible storage capacity, up to 11.5 wt%. Currently the Li–Mg–N–H system has been shown to be able to deliver 5.2 wt% reversibly at a H2 pressure of 30 bar and temperature of 200 °C. The accessibility of the capacity beyond 5.2 wt% is being actively explored. One of the issues related to the application of the metal–N–H storage systems is NH3 formation that takes place simultaneously with H2 release. NH3 formation will not only damage the catalyst in a fuel cell, but also accelerate the cyclic instability of the H-storage material since the metal–N–H system turns into a metal–H system after loosing nitrogen and, therefore, it would not function at the temperature and pressure range designed for the metal–N–H system. The accurate determination of the amounts of NH3 in the H2 is, therefore, very important and has not been previously reported. Here a novel method to quantify NH3 in the desorbed H2, the Draeger Tube, is reported as being suitable for this purpose. The results indicate that the concentration of NH3 in desorbed H2 increases with the desorption temperature. For the (2LiNH2 + MgH2) system the NH3 concentration was found to be 180 ppm at 180 °C and 720 ppm at 240 °C.
Keywords:Hydrogen storage materials   Gas–solid reaction   NH3 formation   Cyclic stability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号