首页 | 本学科首页   官方微博 | 高级检索  
     


APPLICATION OF LASER DIAGNOSTIC TECHNIQUES FOR THE EXAMINATION OF LIQUID FUEL SPRAY STRUCTURE
Authors:C. Presser   A. K. Gupta  H. G. Semerjian  R. J. Santoro
Affiliation: a Center for Chemical Engineering, National Institute of Standards and Technology (formerly National Bureau of Standards), Gaithersburg, MDb Department of Mechanical Engineering, University of Maryland, College Park, MD
Abstract:Results are presented on the spatial distribution of droplet mean size and number density obtained from a hollow-cone kerosene spray, introduced into nonswirling and swirling flow fields. An ensemble light scattering technique, based on measurement of the polarization ratio, has been employed to determine local droplet characteristics in both dense and dilute regions of the spray. The measurements are complemented with Lorenz-Mie calculations of the scattering characteristics for a polydispersion of droplets; the calculations were carried out for different mean sizes and refractive indices. The results reveal that the degree of swirl imparted to the surrounding air flow has a strong influence on spray structure. For all conditions examined the droplet mean size is found lo be larger on the spray boundary than towards the centerline. Droplet mean size is also found to increase with axial distance at all radial positions of the spray; this trend is attributed to the vaporization of smaller droplets and/or possible coalescence between the droplets.

In addition to the ensemble technique, measurements have also been obtained with the phase/Doppler interferometry and light intensity deconvolution techniques under identical experimental conditions. The droplet mean sizes obtained with the ensemble approach are in general smaller than those measured with the phase/Doppler technique; however, general features of the radial profiles obtained with both techniques are similar. The deconvolution technique also indicates the presence of smaller size droplets and supports the results obtained with the ensemble technique. The selective sensitivity of these sizing techniques to different ranges of droplet size and number density is discussed.
Keywords:Atomization  Droplet sizing  Laser diagnostic techniques  Light scattering  Spray combustion
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号