首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子滤波的移动物体定位和追踪算法
引用本文:周帆,江维,李树全,张玉宏,曾雪,吴跃. 基于粒子滤波的移动物体定位和追踪算法[J]. 软件学报, 2013, 24(9): 2196-2213
作者姓名:周帆  江维  李树全  张玉宏  曾雪  吴跃
作者单位:电子科技大学 计算机科学与工程学院, 四川 成都 611731;电子科技大学 计算机科学与工程学院, 四川 成都 611731;电子科技大学 计算机科学与工程学院, 四川 成都 611731;电子科技大学 计算机科学与工程学院, 四川 成都 611731;电子科技大学 计算机科学与工程学院, 四川 成都 611731;电子科技大学 计算机科学与工程学院, 四川 成都 611731
基金项目:国家自然科学基金(61003032, 60903158);高等学校博士学科点专项科研基金(20070614008)
摘    要:提出一种基于粒子滤波的目标定位算法PFTL(particle filter based target localization)以及一种基于网络覆盖问题的节点组织策略SAC(sampling aware tracking cluster formation).PFTL 的基本思想是,采用一系列带权粒子(weighted particles)来预测移动物体位置的后验分布空间,每个新时刻根据传感器的测量数据来权衡和定位目标.PFTL 通过引入误差容忍(error tolerant)的方式来存储和发送目标位置数据,使汇聚点关于物体位置信息的数据误差在一个可控的范围内,进而极大地减少网络通信负荷.SAC基于传感器采样离散化的特点来制订数据融合策略,并以最大化覆盖物体运动轨的方式动态地选取节点和进行节点簇的有效组织.模拟实验结果表明,与现有的几种定位算法和追踪协议相比,结合PFTL 算法和SAC 策略能够以较小的代价取得更好的定位效果和网络负载均衡,进而延长网络寿命.

关 键 词:无线传感器网络  目标定位  目标跟踪  粒子滤波  覆盖问题
收稿时间:2011-07-06
修稿时间:2012-10-10

Moving Target Localization and Tracking Algorithms: A Particle Filter Based Method
ZHOU Fan,JIANG Wei,LI Shu-Quan,ZHANG Yu-Hong,ZENG Xue and WU Yue. Moving Target Localization and Tracking Algorithms: A Particle Filter Based Method[J]. Journal of Software, 2013, 24(9): 2196-2213
Authors:ZHOU Fan  JIANG Wei  LI Shu-Quan  ZHANG Yu-Hong  ZENG Xue  WU Yue
Affiliation:School of Computer Science and Engineering, University of Electronic Science and Technology, Chengdu 611731, China;School of Computer Science and Engineering, University of Electronic Science and Technology, Chengdu 611731, China;School of Computer Science and Engineering, University of Electronic Science and Technology, Chengdu 611731, China;School of Computer Science and Engineering, University of Electronic Science and Technology, Chengdu 611731, China;School of Computer Science and Engineering, University of Electronic Science and Technology, Chengdu 611731, China;School of Computer Science and Engineering, University of Electronic Science and Technology, Chengdu 611731, China
Abstract:This paper proposes a particle filter based target localization (PFTL) algorithm, and a sampling aware tracking cluster formation (SAC) scheme for organizing the sensor nodes, which maximizes the coverage area of target's trajectory in each cluster. The key idea of PFTL is to represent the possible locations of mobile target with a number of weighted particles, and to estimate the particles for computing the position of the object when the range measurements are available at next sampling time step. The motivation behind PFTL is that if the sink is willing to tolerate a small error, regarding the position of the target, the in-network communication can be greatly decreased, as well as the consumed energy, which is the most precious resource in wireless sensor networks. To balance the computation and communication overhead of network, this study designed a node scheduling scheme SAC, which dynamically clusters the sensors aimed at minimizing the times of tracking data hand-offs, so as to save the energy expenditure. Extensive simulations are conducted to verify the proposed methodologies, and the results reveal that PFTL and SAC not only reduce the localization error, but also efficiently extend the network lifetime.
Keywords:wireless sensor network (WSN)  mobile target localization  moving object tracking  particle filter  coverage problem
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号