首页 | 本学科首页   官方微博 | 高级检索  
     

基于Bagging算法和遗传神经网络的交通事件检测
引用本文:朱红斌. 基于Bagging算法和遗传神经网络的交通事件检测[J]. 计算机应用与软件, 2010, 27(1): 234-236
作者姓名:朱红斌
作者单位:丽水学院计算机与信息工程学院,浙江,丽水,323000
摘    要:提出一种集成遗传神经网络的交通事件检测方法,以上下游的流量和占有率作为特征,RBF神经网络作为分类器进行交通事件的自动分类与检测。在RBF神经网络的训练过程中,采用遗传算法GA(Genetic Algorithm)对RBF神经网络的隐层中心值和宽度进行优化,用递推最小二乘法训练隐层和输出层之间的权值。为了提高神经网络的分类能力,采用Bagging算法,进行网络集成。通过Matlab仿真实验,证明该方法相对于传统的事件检测算法能更准确、快速地实现分类。

关 键 词:Bagging算法  交通事件检测  RBF神经网络  遗传算法

TRAFFIC INCIDENT DETECTION BASED ON BAGGING METHOD AND GENETIC NEURAL NETWORK
Zhu Hongbin. TRAFFIC INCIDENT DETECTION BASED ON BAGGING METHOD AND GENETIC NEURAL NETWORK[J]. Computer Applications and Software, 2010, 27(1): 234-236
Authors:Zhu Hongbin
Affiliation:College of Computer and Information Engineering/a>;Lishui University/a>;Lishui 323000/a>;Zhejiang/a>;China
Abstract:A method based on integrated RBF neural network is proposed for traffic incidents detection.Taking the upstream and downstream flows and occupancy rate as the features,RBF neural network is used as a classifier to automatically classify and detect the traffic incidents.The genetic algorithm is used to optimize the hidden layer centre's value and width of RBF neural network and the recursive least square method is used to train the weights between hidden layer and output layer during the training of the RBF ...
Keywords:Bagging method Traffic incident detection RBF neural network Genetic algorithm  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号