首页 | 本学科首页   官方微博 | 高级检索  
     


Enhancement of the Stability of Ti and Ni Ohmic Contacts to 4H-SiC with a Stable Protective Coating for Harsh Environment Applications
Authors:Walter Daves  Andreas Krauss  Volker Häublein  Anton J Bauer  Lothar Frey
Affiliation:(1) Naval Physical and Oceanographic Laboratory, Thrikkakara P.O, Cochin, 682 021, India
Abstract:We report on wafer-level measurements of the long-term stability of Ti and Ni ohmic contacts to n-4H-SiC during thermal treatments in air or air/moisture environments up to 500°C. Contact metallizations with and without a sputtered Ti (20 nm)/TaSi x (200 nm)/Pt (150 nm) diffusion barrier stack and Ti (20 nm)/TiN (10 nm)/Pt (150 nm)/Ti (20 nm) interconnects were compared. A protective coating consisting of a SiO x (250 nm)/SiN y (250 nm) stack deposited by plasma-enhanced chemical vapor deposition (PECVD) was used. The stability of the contact metallizations during long-term thermal treatments in air and air/moisture was studied. The best performance was achieved with Ti ohmic contacts without the Ti/TaSi x /Pt stack. This system successfully withstood 1000 h thermal treatment at 500°C in air followed by 1000 h at 500°C in air/10% moisture. After the aging, the contact failure ratio was below 1% and the specific contact resistivity amounted to (2.5 ± 1.1) × 10−4 Ω cm2. Scanning electron microscopy (SEM) cross-sectional analysis indicated no degradation in the contact metallization, demonstrating the effectiveness of the SiO x /SiN y protective coating in preventing oxidation of the contacts. These results are very promising for applications in harsh environments, where the stability of ohmic contacts is crucial.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号