Modeling and Experimental Studies on 3D-Magnetic Flux Leakage Testing for Enhanced Flaw Detection in Carbon Steel Plates |
| |
Authors: | W. Sharatchandra Singh S. V. Sagar Kumar B. Purnachandra Rao P. Ravindar |
| |
Affiliation: | 1. Non-Destructive Evaluation Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India;2. Metallurgical and Materials Engineering Department, National Institute of Technology, Warangal, Telangana, India;3. Quality Assurance Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India |
| |
Abstract: | ABSTRACTFor enhanced detection of flaws in engineering components using magnetic flux leakage (MFL) technique, measurement of the leakage magnetic field components along the three perpendicular directions is beneficial. This article presents the three dimensional-magnetic flux leakage (3D-MFL) modeling and experimental studies carried out on carbon steel plates. Magnetic dipole model has been used for the prediction of MFL signals and images. Sensitivity of the MFL signals peak amplitudes of tangential (HX), circumferential (HY), and normal (HZ) components with respect to flaw length, width, depth and lift-off have been studied. A 3D-GMR sensor has been used for simultaneous measurement of all the three components of leakage magnetic fields from surface flaws in 12 mm thick carbon steel plates. The experimental MFL images have been compared with the model predicted MFL images. The sensor has shown the capability to detect and image 0.9 mm deep surface flaws with a signal to noise ratio of 8 dB. Principal component analysis (PCA)-based image fusion has been performed for fusion of the 3D-MFL images to obtain a geometrical profile of the flaws. Study reveals that 3D-GMR enhances the capability for detection of flaws having irregular geometries. |
| |
Keywords: | 3D-GMR sensor magnetic flux leakage modeling flaws carbon steel image fusion |
|
|