首页 | 本学科首页   官方微博 | 高级检索  
     


Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity
Authors:Mohammad Arefi  G. H. Rahimi
Affiliation:1. Department of Mechanical Engineering, Tarbiat Modares University, 14115-143, Tehran, Iran
Abstract:The present research develops a three-dimensional multi-field formulation of a functionally graded piezoelectric thick shell of revolution by using tensor analysis. An orthogonal curvilinear coordinate system was employed, and basic geometric equations were derived for an arbitrary thick shell of revolution with variable thickness and curvature. Mechanical and electrical properties were assumed to vary along a three-dimensional orthogonal coordinate system with arbitrary functional distribution. The functional of the introduced shell was derived by using kinetic and potential energy of the structure based on three orthogonal displacement components, electric potential and material properties. The final differential equations were derived in general state for every arbitrary structure and material property distributions. The obtained equations were reduced for functionally graded and functionally graded piezoelectric cylindrical shells and the mentioned reduced equations were verified by comparison with the literature. Trueness and generality of the present results can be justified by capability of these equations for different geometries and material properties.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号