首页 | 本学科首页   官方微博 | 高级检索  
     


Total oxidation catalysts based on manganese or copper oxides and platinum or palladium II: Activity, hydrothermal stability and sulphur resistance
Authors:Magali Ferrandon  Johanna Carn    Sven J  r  s and Emilia Bj  rnbom
Affiliation:

Royal Institute of Technology, Department of Chemical Engineering and Technology, Chemical Technology, S-100 44 Stockholm Sweden

Abstract:Deactivation of catalysts based on either manganese oxides, copper oxides, platinum, palladium or combinations of these metal oxides and noble metals supported on γ-alumina was studied. The activity of the catalysts for the oxidation of carbon monoxide, naphthalene and methane, in a mixture resembling the flue gases from wood combustion, was measured before and after exposure of the catalysts either to a temperature of 900°C in the presence of steam or to sulphur dioxide. Most of the mixed catalysts were more resistant to hydrothermal and sulphur treatments than the catalysts with a single active component. After the hydrothermal treatment the activity of the MnOx catalyst was enhanced. When Pt is combined with MnOx or CuOx, the loss of activity of Pt was decreased during the hydrothermal treatment. Also, the hydrotreated mixed MnOx–Pd and CuOx–Pd catalysts were more active than the treated Pd catalyst for the oxidation of methane. After sulphur treatment, the activities of the mixed MnOx–Pt (Pt: 0.05 mol%), MnOx–Pd and CuOx–Pd catalysts were improved for the oxidation of carbon monoxide and naphthalene. Among the catalysts studied, the MnOx–Pt, CuOx–Pt and CuOx–Pd catalysts, with a metal oxide and a noble metal loading of 10 and 0.1 mol%/γ-alumina, respectively, had the best combination of activity, thermal stability and resistance to sulphur treatment.
Keywords:Manganese oxides  Copper oxides  Platinum  Palladium  Oxidation  Methane  Carbon monoxide  Naphthalene  Deactivation  Sulphur
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号