首页 | 本学科首页   官方微博 | 高级检索  
     

基于函数型数据时间序列建模的齿轮破损图像识别
引用本文:孙雅娟,史岳鹏,冯志慧. 基于函数型数据时间序列建模的齿轮破损图像识别[J]. 机械设计与制造, 2021, 0(2): 214-217. DOI: 10.3969/j.issn.1001-3997.2021.02.050
作者姓名:孙雅娟  史岳鹏  冯志慧
作者单位:河南牧业经济学院信息工程学院(软件学院),河南 郑州 450046;河南牧业经济学院能源与智能工程学院,河南 郑州450046;河南农业大学信息与管理科学学院,河南 郑州 450002
基金项目:河南牧业经济学院2017年度校级科研创新基金;噪声不精准系统的自适应非线性估计融合理论研究
摘    要:当前齿轮破损图像识别未拟合周期性动作捕捉数据,导致齿轮破损图像的识别效率较低,图像边缘轮廓中细节信息丢失,造成识别误差较大、识别效果较差.提出基于函数型数据时间序列建模的齿轮破损图像识别方法,通过小波变换方法提取齿轮破损图像中存在的低频成分,做双直方图均匀化处理,采用高斯高通滤波器提取齿轮破损图像中存在的高频成分,增强...

关 键 词:函数型数据  时间序列  齿轮破损  图像识别

Image Recognition of Gear Damage Based on Function Data Time Series Modeling
SUN Ya-juan,SHI Yue-peng,FENG Zhi-hui. Image Recognition of Gear Damage Based on Function Data Time Series Modeling[J]. Machinery Design & Manufacture, 2021, 0(2): 214-217. DOI: 10.3969/j.issn.1001-3997.2021.02.050
Authors:SUN Ya-juan  SHI Yue-peng  FENG Zhi-hui
Affiliation:(College of Information Engineering,He’nan University of Animal Husbandry and Economy,He’nan Zhengzhou 450046,China;College of Energy and Intelligent Engineering,He’nan University of Animal Husbandry and Economy,He’nan Zhengzhou 450046,China;College of Information and Management Science,He’nan Agricultural University,He’nan Zhengzhou 450002,China)
Abstract:The current gear damage image recognition does not fit the periodic action capture data,resulting in the low efficiency of gear damage image recognition and the loss of detail information in image edge contour,resulting in large recognition error and poor recognition effect.A method of gear damage image recognition based on function data time series modeling is proposed.Wavelet transform is used to extract the low-frequency components in the damaged gear image,and the double histogram homogenization is performed.The high-frequency components in the damaged gear image are extracted by Gaussian high-pass filter to enhance the detailed information in the damaged gear image.Function data analysis method is used to fit the action capture data.According to the obtained data,the period time series is constructed,and the hidden Markov model is obtained.Through the maximum likelihood estimation function,the matching degree between the test model and the sample is calculated to realize the recognition of gear damage image.The experimental results show that the recognition error of the proposed method is small and the recognition effect is good,which can effectively improve the recognition efficiency of gear damage image.
Keywords:Functional Data  Sequentially  Gear Damage  Image Identification
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号