首页 | 本学科首页   官方微博 | 高级检索  
     


Computational modeling of mixed oxidation-carburization processes: Part 1
Authors:S Ling  T A Ramanarayanan  R Petkovic-Luton
Affiliation:(1) Corporate Research Laboratories, Exxon Research & Engineering Co., 08801 Annandale, NJ
Abstract:Heat-resistant alloys used in mixed-oxidant environments rely on the formation of a chromia, alumina, or silica surface film for corrosion resistance and the presence of second-phase precipitates in the matrix often for their strength properties. The growth of the oxide film on such alloys is often accompanied by the dissolution of precipitates in the alloy subsurface region. Continued oxidation combined with oxide-scale spallation tends to decrease the content of the oxide-forming constituent to such a level that protective scaling can no longer occur and severe degradation can develop. In the present work, the initial corrosion processes involving the complex coupling between oxide scale growth and precipitate dissolution is simulated computationally. As an example, a Ni-Cr alloy containing Cr 23 C 6 precipitates was exposed to an oxidizing-carburizing environment. An approach combining finite difference and Newton-Raphson methodologies is developed to model this diffusion/ dissolution process, incorporating the point-defect-chemistry aspects of the oxide scale. The model is able to predict the chemical and microstructural evolution of high-chromium austenitic alloys during the initial stages of oxidation-carburization.
Keywords:computational modeling  carburization  denuded-zone  diffusion-dissolution  finite difference method  Newton-Raphson methodology  defect chemistry
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号