首页 | 本学科首页   官方微博 | 高级检索  
     


Microscopic and Spectroscopic Characterization of Stacking‐Sequence Disordered SiC
Authors:Manshi Ohyanagi  Takahito Imai  Naoki Toyofuku  Daisuke Nakagawa  Zuhair A. Munir
Affiliation:1. Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Ohtsu, Japan;2. Department of Chemical Engineering and Materials Science, University of California, Davis, California
Abstract:Nanometric silicon carbide (SiC) powder (~5 nm) with a stacking‐sequence disordered structure (SD‐SiC), synthesized from elemental powders of Si and C, was investigated by microscopic and several spectroscopic methods. The structure of SD‐SiC was characterized by transmission electron microscopy (TEM), 13C, and 29Si‐NMR, and by infrared (IR), Raman, and X‐ray photoelectron spectroscopy (XPS) methods. TEM characterizations showed relatively large deviations of the lattice parameters in the as‐synthesized SiC, indicative of the presence of stacking‐sequence disorder. IR analysis showed a weaker Si‐C bond in the SD‐SiC than in the 3C‐SiC. XPS determinations showed that C and Si in SD‐SiC are similar to those in 3C‐SiC. Broader peaks of 29Si and 13C MAS‐NMR also indicate that the structure of SD‐SiC is different from that of 3C‐SiC. Raman spectroscopy exhibited activities for the crystalline polytypes and the amorphous of SiC but lack of them for the SD‐SiC. The inactivity of Raman spectroscopy for the SD‐SiC along with large deviation of the lattice constant and the extremely broad X‐ray diffraction peaks would indicate that SD‐SiC is a possible intermediate state between conventional polytype SiC and amorphous SiC, that is, a possible new type of SiC.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号