首页 | 本学科首页   官方微博 | 高级检索  
     


Low‐Temperature Control of Twins and Abnormal Grain Growth in BaTiO3
Authors:David T. Harris  Matthew J. Burch  Jing Li  Elizabeth C. Dickey  Jon‐Paul Maria
Affiliation:Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina
Abstract:The microstructure of polycrystalline barium titanate (BaTiO3) thin films processed with a liquid‐phase can be controlled by the crystallographic orientation of the underlying sapphire substrate. During postdeposition crystallization, the tendency for {111} twin nucleation, which drives subsequent abnormal grain growth, depends upon the specific sapphire facet. Specifically, tilting away from the close‐packed c‐plane modifies the orientation, morphology, and relative amount of an interfacial BaAl2O4 second phase. These factors control the density of twin formation, and thus overall grain size of the crystallized BaTiO3. As the substrate orientation transitions from c‐plane, to r‐plane, to a‐plane, the twin density is reduced, the average grain size decreases systematically from 270 to 130 nm, and the grain structure becomes overall more homogeneous. This twinning mechanism and abnormal grain growth occur by 900°C, several hundred degrees lower than reported previously.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号