首页 | 本学科首页   官方微博 | 高级检索  
     


Investigations on Radiation Tolerance of Mn+1AXn Phases: Study of Ti3SiC2, Ti3AlC2, Cr2AlC,Cr2GeC,Ti2AlC,and Ti2AlN
Authors:Jingren Xiao  Tengfei Yang  Chenxu Wang  Jianming Xue  Yugang Wang
Affiliation:State Key Laboratory of Nuclear Physics and Technology, Center for Applied Physics and Technology, Peking University, Beijing, China
Abstract:Nanolaminated Mn+1AXn phases as candidate materials for next generation nuclear reactor applications show great potential in tolerating radiation damage. However, different Mn+1AXn materials behave very differently when exposed to energetic neutron and ion irradiations. Based on first‐principle calculations, the radiation tolerance of two M3AX2 and four M2AX phases were studied in this work, covering all the Mn+1AXn phases previously investigated with experiments. We have calculated the formation energies of Frenkel pairs and antisite pairs in these materials. The improved radiation tolerance from Ti3AlC2 to Ti2AlC observed by experiments can be understood in terms of different Al/TiC layer ratio as the A atomic plane in the nanolaminated crystal Mn+1AXn accommodates radiation‐induced point defects. The formation of MA–AM antisite pair in Mn+1AXn materials would provide an alternative way to accommodate the defects resulted from radiation damage cascades, whereas this ideal substitution channel does not exist for Cr2GeC due to its pronouncedly higher MA–AM antisite pair formation energy. To further elucidate their radiation damage tolerance mechanism, we have made a detailed analysis on their interatomic M–X, M–A, and X–A bonding characters. Criteria based on the bonding analysis are proposed to assess the radiation tolerance of the six Mn+1AXn materials, which can be further applied to explore other Mn+1AXn phases with respect to their performances under radiation environment.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号