首页 | 本学科首页   官方微博 | 高级检索  
     


Local Structure Investigation in Multiferroic BiFeO3–BaTiO3 Ceramics by XAS Technique and Their Relevant Properties
Authors:Sujitra Unruan  Muangjai Unruan  Teerawat Monnor  Shashank Priya  Rattikorn Yimnirun
Affiliation:1. Department of Materials Engineering, Faculty of Engineering and Architecture, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand;2. Department of Applied Physics, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand;3. School of Physics, Institute of Science, NANOTEC‐SUT Center of Excellence on Advanced Functional Nanomaterials, Suranaree University of Technology, Nakhon Ratchasima, Thailand;4. Department of Mechanical Engineering, Virginia Polytechnic Institute and State University (VirginiaTech), Blacksburg, VA, USA
Abstract:The (1?x)BiFeO3xBaTiO3 (with x = 0.1, 0.2, 0.3, and 0.4) ceramics were fabricated successfully by solid‐state reaction method. Single‐phase perovskite was obtained in all ceramics, as confirmed by XRD technique. It was observed that 0.7BiFeO3–0.3BaTiO3 was the morphotropic phase boundary (MPB) between rhombohedral and cubic phases, as also revealed from ferroelectric and magnetic properties. The simulated and experimental X‐Ray Absorption Spectroscopy (XAS) study revealed that BT in 0.75BF‐0.25BT is possibly taken a rhombohedral structure. Furthermore, the rounded ferroelectric hysteresis loops observed for 0.9BiFeO3–0.1BaTiO3 and 0.8BiFeO3–0.2BaTiO3 compositions could be attributed to their microstructure and surface charge effects and electron transfer between Fe3+ and Fe2+ ions. It was also found that high dielectric constant of 0.9BiFeO3–0.1BaTiO3 composition was a result of grain and grain‐boundary effects, as observed in SEM micrographs. In addition, a strong signature of dielectric relaxation behavior was observed in this ceramic system with the activation energy 0.467 eV obtained from the Arrhenius' law. Finally, the local structure investigation with XAS technique provided additional information to better understand the electric and magnetic properties in the BF‐BT ceramic system.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号