首页 | 本学科首页   官方微博 | 高级检索  
     


Fabrication and Characterization of Transparent (Y0.98−xTb0.02Eux)2O3 Ceramics with Color‐Tailorable Emission
Authors:Bin Lu  Ji‐Guang Li  Xudong Sun  Yoshio Sakka
Affiliation:1. Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan;2. Materials Processing Unit, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan;3. Key Laboratory for Anisotropy and Texture of Materials and School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning, China
Abstract:Transparent (Y0.98?xTb0.02Eux)2O3 (= 0–0.04) ceramics with color‐tailorable emission have been successfully fabricated by vacuum sintering at the relatively low temperature of 1700°C for 4 h. These ceramics have the in‐line transmittances of ~73%–76% at 613 nm, the wavelength of Eu3+ emission (the 5D07F2 transition). Thermodynamic calculation indicates that the Tb4+ ions in the starting oxide powder can essentially be reduced to Tb3+ under ~10?3 Pa (the pressure for vacuum sintering) when the temperature is above ~394°C. The photoluminescence excitation (PLE) spectra of the transparent (Y0.98?xTb0.02Eux)2O3 ceramics exhibit one spin‐forbidden (high‐spin, HS) band at ~323 nm and two spin‐allowed (low‐spin, LS) bands at ~303 and 281 nm. Improved emissions were observed for both Eu3+ and Tb3+ by varying the excitation wavelength from 270 to 323 nm, without notably changing the color coordinates of the whole emission. The transparent (Y0.98Tb0.02)2O3 ceramic exhibits the typical green emission of Tb3+ at 544 nm (the 5D47F5 transition). With increasing Eu3+ incorporation, the emission color of the (Y0.98?xTb0.02Eux)2O3 ceramics can be precisely tailored from yellowish‐green to reddish‐orange via the effective energy transfer from Tb3+ to Eu3+ under the excitation with the peak wavelength of the HS band. At the maximum Eu3+ emission intensity (= 0.02), the ceramic shows a high energy‐transfer efficiency of ~85.3%. The fluorescence lifetimes of both the 544 nm Tb3+ and 613 nm Eu3+ emissions were found to decrease with increasing Eu3+ concentration.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号