首页 | 本学科首页   官方微博 | 高级检索  
     


Pervaporation of Organic Liquids from Binary Aqueous Mixtures using Poly(trifluoropropylmethylsiloxane) and Poly(dimethylsiloxane) Dense Membranes
Authors:Xiao Kang Zhang  Yadagiri Poojari  Lee Ellen Drechsler  Chung Mien Kuo  Joel R Fried  Stephen J Clarson
Affiliation:(1) Department of Chemical and Materials Engineering, The NSF Membrane Applied Science and Technology Center (MAST), 601 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012, USA
Abstract:In this work we have compared and contrasted the pervaporation behaviour (separation factor and flux) of fluorosilicone dense membranes based on poly(trifluoropropylmethylsiloxane) (PTFPMS) with poly(dimethylsiloxane) (PDMS) dense membranes. In particular, pervaporation experiments were carried out at 298 K using lab-made PTFPMS, lab-made PDMS and commercial PDMS membranes in order to remove three different organic liquids pyridine (PY), isopropanol (IPA) and methylethylketone (MEK) from dilute (<10 wt.%) binary aqueous mixtures. All of the silicone membranes studied were found to be successful for the desired separations. The permeation flux of pyridine–water liquid mixtures for the PTFPMS membranes was found to increase with the pyridine concentration in the feed mixtures. The separation factor for PDMS membranes for the removal of pyridine, IPA and MEK from aqueous binary mixtures (1 wt.%) was found to be higher than that of PTFPMS membranes while the normalized flux was higher for PTFPMS membranes under identical test conditions. The effect of crosslink density of the PTFPMS membranes on the separation of pyridine–water mixtures was also studied. For a 1 wt.% feed solution the total flux increased with the molar mass between crosslinks, whereas the separation factor for pyridine–water was highest for a molar mass between crosslinks of 15,320 g mol−1.
Keywords:Pervaporation  Poly(dimethylsiloxane)  Poly(trifluoropropylmethylsiloxane)  Pyridine  Isopropanol  Methylethylketone  Membrane separation  Waste water treatment
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号