首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation into effect of thermal expansion on thermally induced error of ball screw feed drive system of precision machine tools
Affiliation:1. Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University, Aachen, Germany;2. Fraunhofer Institute of Production Technology, Aachen, Germany
Abstract:In order to investigate the effect of thermal expansion on the ball screw feed drive system of a precision boring machine tool, theoretical modeling of and experimental study on thermally induced error along with heat generation characteristics are focused in this paper. A series of thermal experiments are conducted on the machine tool to measure and collect the thermodynamic data with the feed drive system operating at different speeds. Based on the heat generation and transfer analysis of ball screw system, thermal expansion of screw shaft in the axial direction is modeled mathematically. Relationships between the thermal error and axial elongation are established to characterize the thermal error distribution considering the thermal expansion coefficient as a temperature-variant parameter. It turns out that the thermal error varies with different working positions through the ball screw length and working time nonlinearly, and there definitely exists certain transform from the thermal expansion to the thermal error obtained by measurement. In addition, regression analysis is employed to carry out the theoretical modeling of thermal error with the temperature data of the critical heat generation points. The relations between temperature rise and thermal error are formulated directly while taking the thermal expansion as an implicit variable. Experiments under a different condition are preformed and the proposed methods for thermal error modeling prove to be effective and accurate enough to be used in the machining process as well.
Keywords:Ball screw  Thermal expansion  Thermally induced error  Error modeling  Heat generation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号