首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis, photopolymerization kinetics, and thermal properties of UV-curable waterborne hyperbranched polyurethane acrylate dispersions
Authors:Wenhua Yin  Xingrong Zeng  Hongqiang Li  Youjun Hou  Qiongzhi Gao
Affiliation:(1) College of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China;(2) College of Science, South China Agricultural University, Guangzhou, 510640, China;
Abstract:A series of UV-curable waterborne hyperbranched polyurethane acrylate dispersions (WHBPUADs) were prepared via a three-step procedure based on isophorone diisocyanate (IPDI), hyperbranched polyester (HBP), maleic anhydride (MA), and hydroxy-ethyl acrylate (HEA). The structure of WHBPUADs was characterized by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectroscopy (1H NMR). FTIR was also applied to research the effect of double bond concentration on the kinetics of photopolymerization. The heat resistance of the cured films was characterized by thermogravimetric analysis (TGA), and their mechanical properties were also measured. The results showed that the double bond conversion (τ) and photopolymerization rate (R p) were affected by the concentration of double bond and viscosity of WHBPUADs. The UV-curable systems with higher double bond concentration and lower viscosity led to higher τ and R p. The maximum τ and R p reached 93% and 71 mmol g−1 s−1, respectively. The WHBPUADs films possessed better heat resistance and mechanical properties, and with the increase of crosslink density, the heat resistance and hardnesses were further improved.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号