首页 | 本学科首页   官方微博 | 高级检索  
     


Ratio analysis nuclear magnetic resonance spectroscopy for selective metabolite identification in complex samples
Authors:Wei Siwei  Zhang Jian  Liu Lingyan  Ye Tao  Gowda G A Nagana  Tayyari Fariba  Raftery Daniel
Affiliation:Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA.
Abstract:Metabolite identification in the complex NMR spectra of biological samples is a challenging task due to significant spectral overlap and limited signal-to-noise. In this study we present a new approach, RANSY (ratio analysis NMR spectroscopy), which identifies all the peaks of a specific metabolite on the basis of the ratios of peak heights or integrals. We show that the spectrum for an individual metabolite can be generated by exploiting the fact that the peak ratios for any metabolite in the NMR spectrum are fixed and proportional to the relative numbers of magnetically distinct protons. When the peak ratios are divided by their coefficients of variation derived from a set of NMR spectra, the generation of an individual metabolite spectrum is enabled. We first tested the performance of this approach using one-dimensional (1D) and two-dimensional (2D) NMR data of mixtures of synthetic analogues of common body fluid metabolites. Subsequently, the method was applied to (1)H NMR spectra of blood serum samples to demonstrate the selective identification of a number of metabolites. The RANSY approach, which does not need any additional NMR experiments for spectral simplification, is easy to perform and has the potential to aid in the identification of unknown metabolites using 1D or 2D NMR spectra in virtually any complex biological mixture.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号