首页 | 本学科首页   官方微博 | 高级检索  
     


Quantum Algorithms for Weighing Matrices and Quadratic Residues
Authors:van Dam
Affiliation:(1) MSRI Berkeley, HP Labs Palo Alto, and Computer Science Division, Soda Hall, University of California, Berkeley, CA 94720, USA., US
Abstract:Abstract. In this article we investigate how we can employ the structure of combinatorial objects like Hadamard matrices and weighing matrices to devise new quantum algorithms. We show how the properties of a weighing matrix can be used to construct a problem for which the quantum query complexity is significantly lower than the classical one. It is pointed out that this scheme captures both Bernstein and Vazirani's inner-product protocol, as well as Grover's search algorithm. In the second part of the article we consider Paley's construction of Hadamard matrices, which relies on the properties of quadratic characters over finite fields. We design a query problem that uses the Legendre symbol χ (which indicates if an element of a finite field F q is a quadratic residue or not). It is shown how for a shifted Legendre function f s (i)=χ(i+s) , the unknown s ∈ F q can be obtained exactly with only two quantum calls to f s . This is in sharp contrast with the observation that any classical, probabilistic procedure requires more than log q + log ((1-ɛ )/2) queries to solve the same problem.
Keywords:, Quantum algorithms, Combinatorics,
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号