首页 | 本学科首页   官方微博 | 高级检索  
     

大规模时间序列数据库降维及相似搜索
引用本文:李爱国,覃征. 大规模时间序列数据库降维及相似搜索[J]. 计算机学报, 2005, 28(9): 1467-1475
作者姓名:李爱国  覃征
作者单位:西安科技大学计算机科学与技术系,西安,710054;西安交通大学计算机科学与技术系,西安,710049;西安交通大学计算机科学与技术系,西安,710049;清华大学信息科学技术学院,北京,100084
基金项目:本课题得到陕西省科学技术发展计划“十五”攻关项目基金(2000K08-G12)资助.
摘    要:提出一种基于分段多项式表示(PPR)的时间序列数据库相似查询的系统化方法.PPR是一类基于线性多项式回归的正交变换.用PPR变换索引时间序列数据在理论上具备非漏报性质.文中分析了PPR的计算复杂性以及查询阈值的下界,并提出了一种衡量时间序列相似查询算法之查询效率的定量指标.与基于离散傅立叶变换(DFT)和离散小波变换(DWT)的时间序列相似查询算法所作的对比实验表明,所提算法可以用低的索引结构维数获得高的查询效率.

关 键 词:数据库  时间序列  相似搜索  数据挖掘  查询
收稿时间:2003-08-10
修稿时间:2003-08-102005-04-06

Dimensionality Reduction and Similarity Search in Large Time Series Databases
LI Ai-Guo,QIN Zheng. Dimensionality Reduction and Similarity Search in Large Time Series Databases[J]. Chinese Journal of Computers, 2005, 28(9): 1467-1475
Authors:LI Ai-Guo  QIN Zheng
Abstract:The problem of similarity search in time series databases has attracted much research interest in the database and data mining communities in the last decade. A systemic method of indexing and similarity searching in time series databases based on Piecewise Polynomial Representation (PPR) is proposed in this paper. The idea is to map each sub-sequence into a small set of multidimensional rectangles in feature space that is spanned by base of linear polynomial. PPR is a linear polynomial representation, and PAA (Piecewise Aggregate Approximation), an well known time series compression technique, is a special case of PPR. PPR is used as an efficient dimensionality reduction technique to permit similarity search over large time series databases without false dismissals. Computational complexity of PPR is O(n). The lower boundaries of search threshold are estimated, and a detailed performance anlysis of proposed method is presented. The experimental results demonstrate that performances of proposed method are superior to that of DFT (Discrete Fourier Transform) and DWT (Discrete Wavelet Transform) based index techniques.
Keywords:database   time series    similarity search    data mining   query
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号