首页 | 本学科首页   官方微博 | 高级检索  
     

一个从MODIS数据同时反演地表温度和发射率的神经网络算法
引用本文:毛克彪,唐华俊,李丽英,许丽娜. 一个从MODIS数据同时反演地表温度和发射率的神经网络算法[J]. 遥感信息, 2007, 0(4): 9-15,8
作者姓名:毛克彪  唐华俊  李丽英  许丽娜
作者单位:1. 农业部资源遥感与数字农业重点开放实验室/中国农业科学院农业资源与农业区划研究所,北京,100081;中国科学院遥感应用研究所,北京师范大学,遥感科学国家重点实验室,北京,100101;中国科学院研究生院,北京,100049
2. 农业部资源遥感与数字农业重点开放实验室/中国农业科学院农业资源与农业区划研究所,北京,100081
3. 中国科学院遥感应用研究所,北京师范大学,遥感科学国家重点实验室,北京,100101
基金项目:中央级公益性科研院所基本科研业务费专项资金;农业部资源遥感与数字农业重点开放实验开放基金
摘    要:MODIS的三个热红外波段29、31、32建立了三个辐射传输方程,这三个方程包含了5个未知数(大气平均作用温度、地表温度和三个波段的发射率)。用JPL提供的大约160种地物的波谱数据对MODIS三个波段(29/31/32)发射率之间的关系和用MODTRAN4对大气透过率和大气水汽含量之间关系进行模拟分析。分析结果表明地球物理参数之间存在着大量的潜在信息。由于潜在的信息难以严格地用数学表达式来描述,因此神经网络是非常适合被用来解这种病态反演问题。利用辐射传输模型(RM)和神经网络(NN)反演分析表明神经网络能够被用来精确地同时从MODIS数据中反演地表温度和发射率。地表温度的平均反演误差在0.4°C以下;波段29/31/32发射率平均反演误差都在0.008以下。

关 键 词:地表温度  发射率
文章编号:1000-3177(2007)92-0009-07
修稿时间:2006-12-252007-01-17

An NN Algorithm for Retrieving Land Surface Temperature and Emissivity from MODIS Data
MAO Ke-biao,TANG Hua-jun,LI Li-ying,XU Li-na. An NN Algorithm for Retrieving Land Surface Temperature and Emissivity from MODIS Data[J]. Remote Sensing Information, 2007, 0(4): 9-15,8
Authors:MAO Ke-biao  TANG Hua-jun  LI Li-ying  XU Li-na
Affiliation:1.Key Laboratory of Resources Remote Sensing and Digital Agriculture, MOA, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China ;2. State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing, 100101, China;3.Graduate school of Chinese Academy of Sciences, Beijing, 100049, China
Abstract:Three radiative transfer equations are built for MODIS bands 29,31 and 32 to involve five unknown parameters(average atmospheric temperature,land surface temperature and three band emissivities).Temperature and emissivity retrieval from the equations can be thus defined as an ill-posed problem.In the paper thorough analysis has been given to the relationships between different band emissivities in MODIS bands 29,31 and 32 for above 160 types of features provided by JPL,and the relationship between transmittance and water vapor.Due to the fact that some interconnections may exist among the emissivities and the temperatures,we use neural network algorithm for resolution of the five unknown parameters from the three equations.The result indicates that the algorithm is applicable for the ill-posed problem.Therefore,it can be concluded that combination of radiative transfer model(RM)with neural network(NN)algorithm can be an applicable alternative for simultaneous retrieval of land surface temperature and emissivity from MODIS thermal band data.
Keywords:MODIS
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号