首页 | 本学科首页   官方微博 | 高级检索  
     


Low‐Temperature Sintering and Microwave Dielectric Properties of (Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4–(Ca0.8Sr0.2)TiO3 Composite Ceramics
Authors:Guoguang Yao  Peng Liu  Huaiwu Zhang
Affiliation:1. College of Physics and Information Technology, Shaanxi Normal University, , Xi'an, 710062 China;2. School of Science, Xi'an University of Posts and Telecommunications, , Xi'an, 710121 China;3. The Key Laboratory of Electronic Thin Film and Integrated Device, University of Electronic Science and Technology of China, , Chengdu, 610054 China
Abstract:0.9(Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4–0.1(Ca0.8Sr0.2)TiO3 (MZTS–CST) ceramics were prepared by a conventional solid‐state route. The MZTS–CST ceramics sintered at 1325°C exhibited εr = 18.2, Q × f = 49 120 GHz (at 8.1 GHz), and τf = 15 ppm/°C. The effects of LiF–Fe2O3–V2O5 (LFV) addition on the sinterability, phase composition, microstructure, and microwave dielectric properties of MZTS–CST were investigated. Eutectic liquid phases 0.12CaF2/0.28MgF2/0.6LiF and MgV2O6 were developed, which lowered the sintering temperature of MZTS–CST ceramics from 1325°C to 950°C. X‐ray powder diffraction (XRPD) and energy dispersive spectroscopy (EDS) analysis revealed that MZTS and CST coexisted in the sintered ceramics. Secondary phase Ca5Mg4(VO4)6 as well as residual liquid phase affected the microwave dielectric properties of MZTS–CST composite ceramics. Typically, the MZTS–CST–5.3LFV composite ceramics sintered at 950°C showed excellent microwave dielectric properties: εr = 16.3, Q × f = 30 790 GHz (at 8.3 GHz), and τf = ?10 ppm/°C.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号