首页 | 本学科首页   官方微博 | 高级检索  
     

基于互联网无刷直流电机传动系统的控制策略
引用本文:黄晓烁,何衍,蒋静坪. 基于互联网无刷直流电机传动系统的控制策略[J]. 浙江大学学报(工学版), 2013, 47(5): 831-836. DOI: 10.3785/j.issn.1008-973X.2013.05.014
作者姓名:黄晓烁  何衍  蒋静坪
作者单位:浙江大学 电气工程学院,浙江 杭州 310027
基金项目:国家博士点学科专项科研基金资助项目(20030335002);浙江省科技厅资助项目(2004C31084)
摘    要:为了方便处理网络控制系统中的时变延时问题,运用时间戳BP神经网络对每一采样周期的延时数据进行在线、实时预测,建立无刷直流电机网络控制系统的数学模型,导出系统离散状态方程,并基于时间乘误差绝对值积分最小(ITAE)优化控制策略提出初次优化设计方法;为了对无刷直流电机传动系统的量测噪声、突加负载扰动及模型随机干扰进行有效补偿和抑制,采用卡尔曼滤波进行状态估计,同时引入李雅普诺夫稳定性理论求取该系统最优状态反馈矩阵,实现网络控制系统的再次优化.仿真结果表明,该方法能够有效提高传动系统的静动态性能和抗干扰水平.

关 键 词:网络控制系统  无刷直流电机  时间戳BP神经网络  ITAE准则  最优状态反馈

Internet based control strategy for brushless DC motor drive systems
HUANG Xiao-shuo,HE Yan,JIANG Jing-ping. Internet based control strategy for brushless DC motor drive systems[J]. Journal of Zhejiang University(Engineering Science), 2013, 47(5): 831-836. DOI: 10.3785/j.issn.1008-973X.2013.05.014
Authors:HUANG Xiao-shuo  HE Yan  JIANG Jing-ping
Affiliation:(College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China)
Abstract:In order to conveniently process the time-varying delay of networked control system,time delay real-time online prediction by time-stamped BP neural network was applied in each sampling period. Mathematic model of the brushless DC motor drive system using networked control was obtained and discrete state equations of the system were derived. Based on integration of the production of time and absolute error (ITAE) rule an initial optimization design method was given;For the sake of compensation and suppression for the effects of measurement noise, load disturbance, and model perturbation,the state variables estimation by Kalman filter theory was applied and an optimal feedback control matrix based on Lyapunov stability theory was deduced for this system. Eventually, an additional optimization of networked control system was realized. Simulation demonstrates that the static performance,dynamic responses,and capacity of resisting disturbance of system can be obviously improved.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江大学学报(工学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号