首页 | 本学科首页   官方微博 | 高级检索  
     


Squeeze fluid film of spherical hydrophobic surfaces with wall slip
Authors:CW Wu  P Zhou  GJ Ma
Affiliation:aState Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
Abstract:Isothermal squeeze film flow of Newtonian fluid between spherical hydrophobic surfaces with wall slip is investigated using a limiting shear stress model and complementary algorithm. Wall slip velocity is controlled by the liquid–solid interface limiting shear stress. It is found that the wall slip dramatically decreases the hydrodynamic support force of the squeeze fluid film. In the case of large wall slip the hydrodynamic support force increases only slightly with the decrease in the film thickness. We find that wall slip decreases with increasing film thickness and limiting shear stress, but increases with increasing fluid viscosity and approaching velocity. An empirical equation is given for prediction of the fluid load support capacity. The possible effect of pressure on wall slip is also discussed. It is found that fluid pressure suppresses wall slip after the proportionality coefficient of limiting shear stress reaches a critical threshold. However, almost no effect is found when it is below this critical threshold. Good agreements exist between the present theoretical predictions and some existing experimental observations.
Keywords:Wall slip  Squeeze film  Limiting shear stress
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号