首页 | 本学科首页   官方微博 | 高级检索  
     


Formation mechanism of bainitic ferrite in an Fe-2 Pct Si-0.6 Pct C alloy
Authors:Kaneaki Tsuzaki  Aki Kodai  Tactashi Maki
Affiliation:(1) Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, 606-01 Kyoto, Japan;(2) Material Research Department, Akashi Technical Institute, Kawasaki Heavy Industries, Ltd., Kawasaki-cho, 673 Akashi, Japan
Abstract:The bainite transformation at 723 K in an Fe-2 pct Si-0.6 pct C alloy (mass pct) was investigated with transmission electron microscopy (TEM) and quantitative metallography to clarify the growth mechanism of the ferritic component of bainite. In early stages of transformation, the bainitic ferrite was carbide free. The laths of bainitic ferrite within a packet were parallel to one another and separated by carbon-enriched retained austenite. The average carbon concentration of the bainitic ferrite was estimated to be 0.19 mass pct at the lowest, indicating that the ferrite was highly supersaturated with respect to carbon. The laths did not thicken during the subsequent isothermal holding, although they were in contact with austenite of which the average carbon concentration was lower than the paraequilibrium value. In the later stage of transformation, large carbide plates formed in the austenite between the laths, resulting in the decrease in the carbon concentration of the austenite. Subsequently, the ferrite with a variant different from the initially formed ferrite in the packet was decomposed for the completion of transformation. The present results indicate that the bainitic ferrite develops by a displacive mechanism rather than a diffusional mechanism. Formerly Graduate Student, Kyoto University, Kyoto 606-01, Japan This article is based on a presentation made at the Pacific Rim Conference on the “Roles of Shear and Diffusion in the Formation of Plate-Shaped Transformation Products,” held December 18-22, 1992, in Kona, Hawaii, under the auspices of ASM INTERNATIONAL’S Phase Transformations Committee.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号