首页 | 本学科首页   官方微博 | 高级检索  
     

Fisher识别用于暂态稳定评估的训练样本集压缩
引用本文:张文朝,顾雪平,刘艳芳. Fisher识别用于暂态稳定评估的训练样本集压缩[J]. 华北电力大学学报(自然科学版), 2002, 29(3): 44-47
作者姓名:张文朝  顾雪平  刘艳芳
作者单位:华北电力大学电力工程系,河北,保定,071003
基金项目:教育部优秀青年教师基金,教育部高等学校骨干教师基金资助(GG-470-10079-1003).
摘    要:用Fisher线性识别技术考察了暂态稳定输入空间的线性可分性,并将其应用于神经网络训练样本集的压缩。利用Fisher识别,将样本集分成3个区域:稳定区域、失稳区域和不确定区域,对不确定区域的样本采用一种半监督的BP算法来获得一个连续分布的相对稳定指标。由于不确定区域样本数远远小于原始样本集的样本数,因此大大减轻了神经网络的训练负担,提高了训练的速度和效果。在一个10机39节点系统上的应用,表明所选方法的有效性。

关 键 词:Fisher线性识别  暂态稳定评估  神经网络  模式分类
文章编号:1007-2691(2002)03-0044-04
修稿时间:2001-09-17

Fisher linear recognition to training-set compressing for transient stability assessment
ZHANG Wen-chao,GU Xue-ping,LIU Yan-fang. Fisher linear recognition to training-set compressing for transient stability assessment[J]. Journal of North China Electric Power University, 2002, 29(3): 44-47
Authors:ZHANG Wen-chao  GU Xue-ping  LIU Yan-fang
Abstract:This paper proposes to assess the separability of input spaces for transient stability assessment by the Fisher linear recognition and uses it to cut down the training sample set. It divides the original sample set into three regions: stable region, unstable region, and uncertainty region, only the cased in uncertainty region should be used for training. The semi-supervised BP algorithm is employed to get a continuous-spread stability index. Because the size of the uncertainty region is much less than that of the original sample set, the training burden of the neural networks is alleviated very much. The 10-unit New England power system is employed to demonstrate the validity of the proposed approach.
Keywords:fisher linear recognition  transient stability assessment  neural networks  pattern classification
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号