首页 | 本学科首页   官方微博 | 高级检索  
     

无监督的差分鉴别特征提取以及在人脸识别上的应用
引用本文:严慧,杨静宇. 无监督的差分鉴别特征提取以及在人脸识别上的应用[J]. 计算机辅助设计与图形学学报, 2009, 21(11)
作者姓名:严慧  杨静宇
作者单位:南京理工大学计算机科学与技术学院,南京,210094
基金项目:国家自然科学基金重点项目,国家自然科学基金,国家"八六三"高技术研究发展计划 
摘    要:局部保持投影(LPP)只考虑了投影后的局部性,而忽视了非局部性.针对这个问题,引入非局部散布矩阵,提出无监督的差分鉴别特征提取算法,通过最大化非局部和局部之间的散度差来寻找最优变换矩阵,并将其成功地应用于人脸识别.该算法同时引入非局部和局部的信息,揭示隐含在高维图像空间中的非线性结构;采用差分的形式求解最优变换矩阵,以避免"小样本"问题;对LPP中的邻接矩阵进行了修正,以更准确地描述样本之间的邻近关系.在Yale和AR标准人脸库上的实验结果验证了文中算法的有效性.

关 键 词:局部保持投影  局部散度  非局部散度  散度差  人脸识别

Unsupervised Difference Discriminant Feature Extraction-with Application to Face Recognition
Yan Hui,Yang Jingyu. Unsupervised Difference Discriminant Feature Extraction-with Application to Face Recognition[J]. Journal of Computer-Aided Design & Computer Graphics, 2009, 21(11)
Authors:Yan Hui  Yang Jingyu
Abstract:Locality preserving projections (LPP) only concerns the projected locality property while ignores that of"nonlocality".To tackle this problem,a novel unsupervised method of difference discriminant feature extraction is presented.This method extracts an optimal transformation matrix based on maximal nonlocal and local scatter difference,and is successfully applied to face recognition.The proposed method takes into account both the nonlocal and local information to account for the nonlinear structures hidden in the high-dimensional image space.In this method,the "small size sample" problem is avoided by employment of difference operation and the neighborhood relationship is better described by an adequate modification of the adjacency matrix.Extensive experiments on Yale and AR face database demonstrate the effectiveness of the proposed method.
Keywords:locality preserving projection  local scatter  nonlocal scatter  scatter difference  face recognition
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号