首页 | 本学科首页   官方微博 | 高级检索  
     


SBR-clay-carbon black hybrid nanocomposites for tire tread application
Authors:Jineesh Ayippadath Gopi  Sanjay Kumar Patel  Arup Kumar Chandra  Deba Kumar Tripathy
Affiliation:(1) Rubber Technology Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal, India;(2) Apollo Tyres Limited, Research and Development Centre, Limda, Waghodia, Vadodara, 391760, Gujarat, India;
Abstract:Styrene butadiene rubber-organoclay nanocomposites were prepared with Cloisite 15A via melt intercalation. X-ray diffraction and transmission electron microscopy indicated that the nanostructures are partially exfoliated and intercalated. The nanocomposites exhibited great improvements in tensile strength and tensile modulus. The incorporation of organoclay gave rise to considerable reduction of tan delta and increase in storage modulus in the rubbery region. It is shown that after 6 phr (parts per hundred rubber) clay loading there is not much increase in the properties. The effect of carbon black (N330) on mechanical properties, dynamic mechanical properties, heat build up, abrasion resistance in the nanocomposites having the optimized clay level (6 phr) was investigated. Optimum results were obtained with the addition of 25 phr carbon black. For comparison with the 6phr nanoclay and 25phr N330 (high abrasion furnace carbon black) filled SBR composites, 40 phr N330 filled SBR composites was used. The 6phr organoclay and 25phr N330 filled SBR nanocomposite showed better properties than 40phr carbon filled SBR compound. These results indicate that 6phr organoclay can be replaced by 15 phr carbon black from the conventional SBR-carbon black based tire tread compounds. The Dynamic mechanical analyzer (DMA) results revealed that the new tire tread compound gives better rolling resistance and comparable wet grip resistance and lower heat build up than that of conventional tread compound.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号