European Commission, Joint Research Centre, Institute for Advanced Materials, Ispra Site, I-21020 Ispra (VA), Italy
Abstract:
The condition of the surfaces is of crucial importance for the deuterium permeation through materials. In this work a study of the surface constants for the adsorption (σk1) and release (σk2) of deuterium under different surface conditions on the martensitic steel DIN 1.4914 (MANET) has been carried out. The growth of an oxide surface layer (Cr2O3) of about 25–30 nm in a MANET sample, heat treated in an oxidizing environment, compared to the bare MANET that have a ‘natural' oxide of about 5 nm has provoked a reduction of both the permeation rate and the recombination coefficient (about 3 orders of magnitude). In addition, the permeation governing process has changed from diffusion-limited to surface-limited. The measurements of the permeation rate of deuterium were performed by a gas-phase permeation technique over the temperature range 574–746 K and for deuterium driving pressures in the range from 3 to 105 Pa.