首页 | 本学科首页   官方微博 | 高级检索  
     


Nano-scale bi-layer Pd/Ta, Pd/Nb, Pd/Ti and Pd/Fe catalysts for hydrogen sorption in magnesium thin films
Authors:XueHai Tan  Christopher T Harrower  Babak Shalchi Amirkhiz  David Mitlin  
Affiliation:aUniversity of Alberta, Chemical and Materials Engineering, and National Institute for Nanotechnology, NRC, Edmonton AB, Canada
Abstract:We analyzed the elevated temperature volumetric hydrogen sorption behavior of magnesium thin films catalyzed by nano-scale bi-layers of Pd/Ta, Pd/Nb, Pd/Ti and Pd/Fe. Sorption of magnesium catalyzed by pure Pd was determined as a baseline. Sorption cycling demonstrated that when utilizing pure Pd and the Pd/Fe bi-layer catalysts the sorption kinetics of the Mg films rapidly degraded. However with the Pd/Nb, Pd/Ti and Pd/Ta bi-layer catalysts the composite remained cycleable. After multiple sorption cycles the Pd/Nb and Pd/Ti catalyst combinations possessed the fastest kinetics. X-ray diffraction analysis showed that NbH0.5 and TiH2 are formed during testing. Basic thermodynamic analysis indicates that NbH0.5 and TiH2 should be stable both during absorption and during desorption. We believe that this is why Nb and Ti are the most effective intermediate layers: The elements form stable hydrides at the Mg surfaces preventing complete Pd-Mg interdiffusion and/or acting as hydrogen catalysts and pumps.
Keywords:Hydrogen storage  Thin films  Catalysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号