首页 | 本学科首页   官方微博 | 高级检索  
     

基于规范化KDDA的人脸识别算法
引用本文:杨家红,史超,王耀南. 基于规范化KDDA的人脸识别算法[J]. 计算机工程与应用, 2007, 43(5): 36-38
作者姓名:杨家红  史超  王耀南
作者单位:湖南师范大学,工学院,长沙,410081;湖南大学,电气与信息工程学院,长沙,410082;湖南师范大学,工学院,长沙,410081;湖南大学,电气与信息工程学院,长沙,410082
基金项目:湖南省省教育厅资助科研课题
摘    要:传统的PCA和LDA算法受限于“小样本问题”,且对像素的高阶相关性不敏感。论文将核函数方法与规范化LDA相结合,将原图像空间通过非线性映射变换到高维特征空间,并借助于“核技巧”在新的空间中应用鉴别分析方法。通过对ORL人脸库的大量实验表明,该方法在特征提取方面优于PCA,KPCA,LDA等其他方法,在简化分类器的同时,也可以获得高识别率。

关 键 词:核函数方法  规范化KDDA  KPCA  小样本问题
文章编号:1002-8331(2007)05-0036-03
修稿时间:2006-11-01

Face recognition algorithm based on regularized kernel direct discriminant analysis
YANG Jia-hong,SHI Chao,WANG Yao-nan. Face recognition algorithm based on regularized kernel direct discriminant analysis[J]. Computer Engineering and Applications, 2007, 43(5): 36-38
Authors:YANG Jia-hong  SHI Chao  WANG Yao-nan
Abstract:Traditional methods,such as PCA(Principle Component Analysis) and LDA(Linear Discriminant Analysis),not only suffer from the so-called "Small Sample Size"(SSS) problem,but also are insensitive to the high order relations of image pixels.In this paper,kernel machine based regularized discriminant analysis method is proposed,which projects the image space to the high dimensional feature subspace through some non-linear transformation,and then performs discriminant analysis using the "kernel-skills" on the new feature subspace.Extensive experiments on ORL database indicate the method proposed outperforms PCA,KPCA,LDA methods on feature extraction.It can also simplify the classifier design,meanwhile,accomplish high recognition rate.
Keywords:kernel methods  Regularized Kernel Direct Discriminant Analysis  Kernel Principle Component Analysis(KPCA)  Small Sample Size Problem(SSS)  
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号