首页 | 本学科首页   官方微博 | 高级检索  
     

基于最小二乘向量机的说话人识别研究
引用本文:但志平,郑胜. 基于最小二乘向量机的说话人识别研究[J]. 计算机工程与应用, 2007, 43(7): 49-51
作者姓名:但志平  郑胜
作者单位:三峡大学,电气信息学院,湖北,宜昌,443002;三峡大学,电气信息学院,湖北,宜昌,443002;华中科技大学,电信系,武汉,430074
摘    要:说话人识别系统在说话人模板的建立过程中由于说话人的语音帧数量太多,往往要进行筛选,通常这种选择是一种基于枚举的大量反复的提取过程,复杂费时且结果往往并不是最优的。而基于统计学习理论的支持向量机(SVM)方法正好克服了这方面的不足。讨论了一种改进的SVM即最小二乘向量机(LSSVM)的方法进行说话人识别研究。研究表明,基于LSSVM的说话人识别比传统的SVM说话人识别计算复杂度小、效率更高、对说话人识别有很强的适应性。

关 键 词:说话人识别  最小二乘向量机  核函数  线性预测
文章编号:1002-8331(2007)07-0049-03
修稿时间:2006-11-01

Research of LSSVM-based speaker recognition
DAN Zhi-ping,ZHENG Sheng. Research of LSSVM-based speaker recognition[J]. Computer Engineering and Applications, 2007, 43(7): 49-51
Authors:DAN Zhi-ping  ZHENG Sheng
Abstract:The optimal selection of the speech frames is important and necessary to generate the speaker template of the speaker recognition system since the number of the frames is too large.The existing general selection procedures based on the large number of enumeration and many times iteration,are usually complicated and time-consuming,and the result generated by these methods is not always optimal.The Support Vector Machines(SVM) based on the Statistical Learning Theory can solve this prob-lem.An improved SVM named the Least Square Support Vector Machines(LSSVM) is discussed in this paper.The experimental results demonstrate that the LSSVM-based speaker recognition is less computational complexity and more efficient than the SVM-based speaker recognition.Then it has high adaptability for the speaker recognition.
Keywords:speaker recognition  Least Square Support Vector Machines(LSSVM)  kernel function  linear predictive coding
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号