首页 | 本学科首页   官方微博 | 高级检索  
     

一种MEMS加速度计的噪声处理与参数训练方法
摘    要:为进一步提高微机电系统(MEMS)加速度计的测量精度,建立以测量值为输入、真实值为输出的MEMS加速度计误差补偿模型,利用Allan方差和最小均方(LMS)自适应滤波算法对加速度计在6个位置下的多组实际测量数据进行噪声分析和预处理,处理后的全部测量数据作为样本训练模型参数,利用最小二乘和批量梯度下降相结合的方法获得样本数据对真实模型参数的最优拟合,并利用该模型对加速度计进行误差补偿,实现MEMS加速度计的高精度标定。实验验证表明,利用该模型对MEMS加速度计进行误差补偿后,输出值的均值误差为(0.72~1.19)×10-4g,标准差为(0.75~1.61)×10-4g,相对于补偿前,均值误差降低了2个数量级,标准差降低了1个数量级,有效提高了MEMS加速度计的测量精度和稳定性。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号