首页 | 本学科首页   官方微博 | 高级检索  
     

整合无人机和面向对象的农村居住环境信息提取
引用本文:郝睿,李兆富,张舒昱,潘剑君,姜小三,张文敏,宋金超. 整合无人机和面向对象的农村居住环境信息提取[J]. 遥感技术与应用, 2020, 35(3): 576-586. DOI: 10.11873/j.issn.1004-0323.2020.3.0576
作者姓名:郝睿  李兆富  张舒昱  潘剑君  姜小三  张文敏  宋金超
作者单位:1.南京农业大学 资源与环境科学学院,江苏 南京 210095;2.哥本哈根大学 地球科学和自然资源管理系,丹麦 哥本哈根 1350
基金项目:国家自然科学基金项目“太湖地区湖库水源地流域湿地景观格局多样性的水环境过程与功能响应机制”(41571171);江苏省信息农业重点实验室开放课题基金(KLIAKF1801)
摘    要:无人机遥感和面向对象图像分析技术在环境监测中得到越来越多的发展。然而在科学文献领域,使用无人机和面向对象制图农村居住环境的文献仍然很少。因此本研究构造一个整合框架用于提取农村居住环境中各类地物信息。首先利用尺度参数评估(ESP, Estimation of Scale Parameter)工具和专家判断来确定最优分割尺度参数;然后分别采用专家规则集和监督分类算法提取农村居住环境中各类地物;最后采用基于面的精度评价方法对分类性能进行评估。结果表明,利用ESP工具和专家判断确定最优分割尺度是可行的。总体精度为75.19%,说明基于规则的提取方法对研究区各类地物的提取效果不佳。但在农村居住环境中利用模板匹配结合阈值规则对太阳能热水器提取精度达92%。分析训练样本和特征对随机森林(RF,Random Forest)、支持向量机(SVM, Support Vector Machines)和K最近邻 (KNN, K-Nearest Neighbor) 分类器分类结果的影响,说明RF分类器对农村居住环境分类效果最好,总体分类精度高达91.34%。研究结果表明:该框架在农村居住环境地物提取方面是一种有价值的工具。

关 键 词:无人机  面向对象  农村居住环境  整合框架  太阳能热水器  
收稿时间:2019-03-12

Integrating UAV and Object-based Image Analysis for Rural Residential Environment Information Extraction
Rui Hao,Zhaofu Li,Shuyu Zhang,Jianjun Pan,Xiaosan Jiang,Wenmin Zhang,Jinchao Song. Integrating UAV and Object-based Image Analysis for Rural Residential Environment Information Extraction[J]. Remote Sensing Technology and Application, 2020, 35(3): 576-586. DOI: 10.11873/j.issn.1004-0323.2020.3.0576
Authors:Rui Hao  Zhaofu Li  Shuyu Zhang  Jianjun Pan  Xiaosan Jiang  Wenmin Zhang  Jinchao Song
Abstract:The remote sensing of Unmanned Aerial Vehicle (UAV) and Object-Based Image Analysis(OBIA) technologies have advanced increasingly for environmental monitoring in recent years. However, references to the uses of UAV and OBIA for mapping rural residential environment are still scarce in the field of scientific literature. In this study, an integration framework was developed to extract various ground objects in rural residential environment. First, Estimation of Scale Parameter (ESP) tool and expert judgement were used to identify the optimal Segmentation Scale Parameter (SSP). Then, the expert rule-sets and supervised classification algorithms were applied to extract information of ground objects in rural residential environment, respectively. Finally, the performance accuracy was evaluated by using an area-based method. The results indicated that using ESP tool and expert judgment to determine the optimal SSP is feasible. Furthermore, the overall accuracy (OA) is 75.19%, indicating that the rule-based extraction method is not good at extracting all kinds of ground objects in study area. However, Solar Water Heaters (SWHs) were successfully extracted in rural residential environment by using template matching combined with threshold rules and the extraction accuracy can achieve 92%. Moreover, the influences of training samples and features were analyzed on the classification results of the Random Forest (RF), Support Vector Machines (SVM) and K-Nearest Neighbor (KNN) classifiers, showing that the RF classifier has the best classification result, with its value of OA reaching 91.34%. The results indicated that the integrate framework is a valuable tool in the extraction of ground objects from rural residential environment.
Keywords:UAV  OBIA  Rural residential environment  Integration framework  Solar water heater  
本文献已被 CNKI 等数据库收录!
点击此处可从《遥感技术与应用》浏览原始摘要信息
点击此处可从《遥感技术与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号