首页 | 本学科首页   官方微博 | 高级检索  
     


Anomalous behavior of unplasticized PVC compounds in capillary flow
Authors:Nobuyuki Nakajima  Edward A Collins
Abstract:Capillary rheometry was performed over a temperature range of 170°–200°C and a shear-rate range of 3–3000 sec?1 on an unplasticized poly(vinyl chloride) compound. The data were corrected for the effect of pressure on viscosity, for pressure loss in the barrel and at the capillary entrance, and for the non-Newtonian velocity profile. The pressure coefficient of viscosity was found to be in the same order of magnitude as those previously found with linear polyethylene and butadieneacrylonitrile copolymers. The pressure–shear-rate superposition of the flow curves is valid at least approximately, although the temperature–shear-rate superposition is inapplicable. The shape of flow curves at 180°, 190°, and 200°C are concave downward when they are expressed as log-shear-stress-log-shear-rate. Similar plots at 170° and 175°C, however, are very different; shear stress is independent of shear rate at low shear rates, increases somewhat and becomes independent of shear rate again at high shear rates. There is no detectable temperature dependence of flow behavior at 170° and 175°C. Irregularly shaped extrudates were obtained at higher shear rates. At constant shear rate the irregularity increased with the length of the capillary. The effect of thermal-mechanical history on the particulate and crystalline structure is discussed with possible influence on the reproducibility of the rheological data.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号