首页 | 本学科首页   官方微博 | 高级检索  
     

基于硬件加速的高速数据流连续实时聚集查询
引用本文:刘学军,胡平,徐宏炳,董逸生,钱江波,王永利. 基于硬件加速的高速数据流连续实时聚集查询[J]. 电子学报, 2007, 35(2): 228-233
作者姓名:刘学军  胡平  徐宏炳  董逸生  钱江波  王永利
作者单位:南京工业大学信息科学与工程学院,江苏南京,210009;东南大学计算机科学与工程学院,江苏南京,210096;南京工业大学信息科学与工程学院,江苏南京,210009;东南大学计算机科学与工程学院,江苏南京,210096
基金项目:江苏省高技术研究发展计划项目,江苏省研究生培养创新工程项目
摘    要:近年来,动态数据流环境下的聚集查询正成为一个热点研究问题.目前的相关算法主要是采用近似技术,以牺牲精度来换取处理速度的提高.然而,在高速数据流环境下,处理速度仍然难以满足需求.软硬件协同的高速数据流处理技术逐渐引起人们的关注.提出了一种基于硬件加速的高速数据流聚集查询方法,充分发挥硬件在处理速度上的优势和软件在灵活性方面的长处.算法是增量的,也实现了多窗口资源共享.最后,给出了算法的复杂度分析并实验验证了方法的有效性.

关 键 词:数据流  聚集查询  软硬件协同  增量计算
文章编号:0372-2112(2007)02-0228-06
收稿时间:2006-02-13
修稿时间:2006-02-132006-08-22

Continual Aggregation Queries over High Rate Data Streams Based on Hardware Acceleration
LIU Xue-jun,HU Ping,XU Hong-bing,DONG Yi-sheng,QIAN Jiang-bo,WANG Yong-li. Continual Aggregation Queries over High Rate Data Streams Based on Hardware Acceleration[J]. Acta Electronica Sinica, 2007, 35(2): 228-233
Authors:LIU Xue-jun  HU Ping  XU Hong-bing  DONG Yi-sheng  QIAN Jiang-bo  WANG Yong-li
Affiliation:1. College of Information Science and Engineering,Nanjing University of Technology,Nanjing,Jiangsu 210009,China;2. College of Computer Science and Engineering,Southeast University,Nanjing,Jiangsu 210096,China
Abstract:Recently there has been a growing interest in aggregation queries for scenarios in which data streams arrive at very high rates and a data stream system is registered with many simultaneous queries. In order to dealing with the huge amounts of data and increasingly stringent response-time requirements, Most existing work in this area has to adopt approximate technology which sacrifice aggregate veracity. But in the environment of high rate data streams, the processing rate still cannot satisfy requirements. So query processing based on hardware-software codesign has recently emerged as a viable solution for dealing with high rate data streams.In this paper, We propose a kind of novel aggregate query algorithms based on hardware-software codesign, which incorpo- rate hardware advantage in processing rate and software long suit in agility. Many incremental computation approaches and resourue sharing techniques in sliding-window aggregations are introduced.Lastly,time cost of the algorithm is analyzed and the experiment show the feasibility and effectiveness of the approach.
Keywords:data streams  aggregation queries  hardware-software codesign   incremental computation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号