首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的机器人路径规划的蚁群算法
引用本文:陈雄,赵一路,韩建达. 一种改进的机器人路径规划的蚁群算法[J]. 控制理论与应用, 2010, 27(6): 821-825
作者姓名:陈雄  赵一路  韩建达
作者单位:1. 复旦大学电子工程系智能控制实验室,上海,200433
2. 中国科学院沈阳自动化研究所,辽宁,沈阳,110016
基金项目:国家“863”计划资助项目(2006AA03A115); 沈阳机器人学国家重点实验室资助项目(R2200703).
摘    要:针对具有复杂回旋地形结构的机器人路径规划问题, 提出了一种改进的蚁群算法. 该算法引入自适应迁移概率函数实现蚁群具有正、反向运动的能力, 改善了算法的曲折迂回能力; 能见度信息中引入距离启发因素和障碍相交检测机制, 完成路径搜索与避障过程有机结合, 提高算法的搜索效率; 引入贪婪信息素更新策略和节点信息素分布, 降低了数据存储量, 改善了路径规划的效果和算法的收敛速度. 基于不同算法的比较仿真实验, 数值结果证实了该算法的有效性.

关 键 词:蚁群算法   移动机器人   路径规划   栅格法
收稿时间:2009-12-09
修稿时间:2009-12-09

An improved ant colony optimization algorithm for robotic path planning
CHEN Xiong,ZHAO Yi-lu and HAN Jian-da. An improved ant colony optimization algorithm for robotic path planning[J]. Control Theory & Applications, 2010, 27(6): 821-825
Authors:CHEN Xiong  ZHAO Yi-lu  HAN Jian-da
Affiliation:Intelligent Control Research Lab, Department of Electronic Engineering, Fudan University,Intelligent Control Research Lab, Department of Electronic Engineering, Fudan University,Shenyang Institute of Automation, Chinese Academy of Science
Abstract:An improved ant colony optimization(ACO) algorithm for robotic path planning in a complex roundabout environment is proposed. The adaptive migratory probability function is introduced to make ants have the ability to travel in forward and backward direction of the target; thus, the ability in finding circuitous routes is improved. The distance elicitation factor and the crossing obstacle detection mechanism are introduced into the visibility information to integrate the path search with the obstacle-avoiding process for improving the search efficiency. The greedy pheromone updating strategy and the node pheromone distribution mode are studied to optimize the path planning result, convergence rate and data storage. The simulation results validate the effectiveness of the algorithm.
Keywords:ant colony optimization   mobile robot   path planning   grids
本文献已被 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号