首页 | 本学科首页   官方微博 | 高级检索  
     


Progress in the design of new lead-free solder alloys
Authors:Mark McCormack PhD  Sungho Jin PhD
Affiliation:1. AT&T Bell Laboratories, Murray Hill, New Jersey, USA
2. Applied Materials and Metallurgy Research Group, AT&T Bell Laboratories, Murray Hill, New Jersey, USA
Abstract:Various alloy design approaches have been employed to develop new lead-free solder alloys that can not only substitute for the lead-tin solders, but also offer significantly improved mechanical properties. Three new alloys are described in this article. In Sn-3.5Ag-1Zn (melting point ~217°C), the solidification structure and the eutectic precipitate morphology are6 refined by the addition of zinc. As a result, a high-strength, high-ductility solder with significantly improved creep resistance is obtained. In Bi-43Sn+2.5Fe, a eutectic alloy (melting point ~137°C), dispersion hardening by magnetically distributed iron particles retards both high-temperature deformation and microstructural coarsening, thus widening the useful service range of Bi-Sn eutectic alloys to much higher homologous temperatures than are typical for the Sn-Pb eutectic alloy. Lastly, Sn-Zn-In based alloys (melting point ~185°C) have been developed for consideration as a drop-in replacement for the neareutectic Sn-Pb alloy(melting point ~183°C).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号