首页 | 本学科首页   官方微博 | 高级检索  
     

基于A位元素置换策略合成新型MAX相材料Ti3ZnC2
引用本文:李勉,李友兵,罗侃,LU Jun,EKLUND Per,PERSSON Per,ROSEN Johanna,HULTMAN Lars,都时禹,黄政仁,黄庆. 基于A位元素置换策略合成新型MAX相材料Ti3ZnC2[J]. 无机材料学报, 2019, 34(1): 60-64. DOI: 10.15541/jim20180377
作者姓名:李勉  李友兵  罗侃  LU Jun  EKLUND Per  PERSSON Per  ROSEN Johanna  HULTMAN Lars  都时禹  黄政仁  黄庆
作者单位:1. 中国科学院 宁波工业技术与工程研究所, 核能材料工程实验室(筹), 宁波315201;2. Department of Physics, Chemistry, and Biology (IFM), Linköping University, 581 83 Linköping, Sweden
基金项目:国家自然科学基金(91426304, 51502310) National Natural Science Foundation of China (91426304, 51502310)
摘    要:MAX相材料是一类兼具金属和陶瓷特性的三元层状材料, 在高温导电、耐磨、耐腐蚀和耐辐照损伤等方面性能优异。目前已经合成出的MAX相材料已有70余种, 但A位元素一直局限在ⅢA和ⅣA主族元素, 如Al、Si、Ga等, 而以副族元素占据A位的MAX相鲜有报道。本研究以Ti3AlC2为前驱体, 利用熔盐中的A位置换反应, 制备出了A位为Zn元素的全新MAX相材料Ti3ZnC2。结合X射线衍射、扫描电子显微镜和透射电子显微镜等分析手段对Ti3ZnC2的成分和结构进行了确认, 并通过密度泛函理论对Ti3ZnC2的结构稳定性和晶格参数进行了确定。进一步通过热力学计算对Fe、Co、Ni、Cu等几种元素的A位置换反应进行了预测, 发现采用这几种元素的氧化物进行置换反应在热力学上也都具有可行性。本研究所提出的元素置换策略是在保持MAX相六方层状晶体结构的基础上, 利用Al、Zn在高温下形成共晶产物实现Zn原子向A层内的迁移, 而熔盐介质的存在促进了反应动力学。本方法巧妙地避免了MAX相传统合成过程中竞争相的形成, 如M-A合金相, 因此可以用于探索更多未知的MAX相材料。

关 键 词:MAX相  置换反应  Ti3ZnC2  
收稿时间:2018-08-21
修稿时间:2018-09-08

Synthesis of Novel MAX Phase Ti3ZnC2 via A-site-element-substitution Approach
LI Mian,LI You-Bing,LUO Kan,LU Jun,EKLUND Per,PERSSON Per,ROSEN Johanna,HULTMAN Lars,DU Shi-Yu,HUANG Zheng-Ren,HUANG Qing. Synthesis of Novel MAX Phase Ti3ZnC2 via A-site-element-substitution Approach[J]. Journal of Inorganic Materials, 2019, 34(1): 60-64. DOI: 10.15541/jim20180377
Authors:LI Mian  LI You-Bing  LUO Kan  LU Jun  EKLUND Per  PERSSON Per  ROSEN Johanna  HULTMAN Lars  DU Shi-Yu  HUANG Zheng-Ren  HUANG Qing
Affiliation:1. Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China;
2. Department of Physics, Chemistry, and Biology (IFM), Linköping University, 581 83 Linköping, Sweden;
Abstract:Using Ti3AlC2 as the precursor, a new MAX phase Ti3ZnC2 was synthesized via an A-elemental substitution reaction in a molten salts bath. Composition and crystal structure of Ti3ZnC2 were confirmed by XRD, SEM and TEM analysis. Its structure stability and lattice parameter of Ti3ZnC2 were further proved by a theoretical calculation based on density function theory (DFT). Moreover, thermodynamics of A-elemental substitution reactions based on Fe, Co, Ni, and Cu were investigated. All results indicated that the similar substitution reactions are feasible to form series of MAX phases whose A sites are Fe, Co, Ni, and Cu elements. The substitution reaction was achieved by diffusion of Zn atoms into A-layers of Ti3AlC2, which requires Al-Zn eutectic formation at high temperatures. The molten salts provided a moderate environment for substitution reaction and accelerated reaction dynamics. The major advantage of this substitution reaction is that MAX phase keeps individual metal carbide layers intact, thus the formation of competitive phases, such as MA alloys, was avoided. The proposed A-elemental substitution reactions approach opens a new door to design and synthesize novel MAX phases which could not be synthesized by the traditional methods.
Keywords:MAX phase  elemental exchange reaction  Ti3ZnC2  
本文献已被 CNKI 等数据库收录!
点击此处可从《无机材料学报》浏览原始摘要信息
点击此处可从《无机材料学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号