首页 | 本学科首页   官方微博 | 高级检索  
     


Elevated-temperature crack growth in polycrystalline alumina under static and cyclic loads
Authors:Ewart  L  Suresh  S
Affiliation:(1) Division of Engineering, Brown University, 02912 Providence, RI, USA;(2) Present address: U. S. Army Materials Technology Laboratory, 02172 Watertown, MA, USA
Abstract:An experimental investigation has been conducted to study the crack growth characteristics of a 90% pure aluminium oxide in 1050 °C air under static and cyclic loads. It is shown that the application of both sustained and fluctuating tensile loads to the ceramic, tested in a precracked four-point bend specimen configuration, results in appreciable subcritical crack growth. The crack velocities under cyclic loading conditions are up to two orders of magnitude slower than those measured in static loading under the same maximum stress intensity factor. Cyclic crack growth rates are markedly affected by the loading frequency, with a decrease in test frequency causing an increase in the rate of crack advance. Detailed optical and electron microscopy observations have been made in an attempt to study the mechanisms of stable crack growth and the mechanistic differences between static fatigue fracture. Under both static and cyclic loads, the predominant mode of fracture is intergranular separation. The presence of a glass phase along the grain boundaries appears to have a strong effect on the mechanisms of crack growth. Apparent differences in the crack velocities between static and cyclic fatigue in alumina arise from crack-wake contact effects as well as from the rate-sensitivity of deformation of the glass phase. Our results also indicate that the cyclic fatigue crack growth rates cannot be predicted solely on the basis of sustained load fracture data. White stable crack growth occurs in the 90% pure alumina over a range of stress intensity factor spanning 1.5 to 5 MPa m1/2, such subcritical fracture is essentially suppressed in a 99.9% pure alumina, ostensibly due to the paucity of a critical amount of glass phase. Both static and cyclic fracture characteristics of the 90% pure alumina are qualitatively similar to those found in an Al2O3-SiC composite wherein situ formation of glass phases, due to the oxidation of SiC in high-temperature air, is known to be an important factor in the fracture process.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号