首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于树莓派平台的脐橙品质分级方法
引用本文:夏垚,胡步发,张善福. 一种基于树莓派平台的脐橙品质分级方法[J]. 机械制造与自动化, 2022, 51(1): 128-131. DOI: 10.19344/j.cnki.issn1671-5276.2022.01.033
作者姓名:夏垚  胡步发  张善福
作者单位:福州大学 机械工程及自动化学院,福建 福州305116
摘    要:针对目前脐橙品质分级自动化程度较低,难以满足现代化生产运营需求的问题,设计了一种基于树莓派平台的脐橙品质分级方法。在S和V颜色分量图像上完成背景分割,并对脐橙表面的反光区域进行亮度矫正;提取脐橙的大小和着色度特征,并提出基于积分图的局部阈值分割算法,完成果面缺陷的检测;利用决策树算法实现脐橙品质的分级。试验结果表明:此方法对特级果、一等果、二等果、等外果的识别准确率分别达到96%、94%、94%、96%,单列输送线的分级速率达3个/s,准确性和实时性较高,能够满足实时环境下脐橙分级检测的要求。

关 键 词:树莓派  机器视觉  脐橙分级  决策树  积分图

Quality Grading Method of Navel Orange Based on Raspberry Pi Platform
XIA Yao,HU Bufa,ZHANG Shanfu. Quality Grading Method of Navel Orange Based on Raspberry Pi Platform[J]. Machine Building & Automation, 2022, 51(1): 128-131. DOI: 10.19344/j.cnki.issn1671-5276.2022.01.033
Authors:XIA Yao  HU Bufa  ZHANG Shanfu
Affiliation:(College of Mechanical Engineering and Automation,Fuzhou University,Fuzhou 350116,China)
Abstract:To improve the low automation degree of navel orange quality classification,a method of navel orange quality classification based on Raspberry Pi platform is designed.The background is segmented on the S and V color components,and the brightness of the reflective areas on the navel orange surface is corrected.The size and color characteristics of navel orange are extracted and a local threshold segmentation method based on integral image is proposed to complete the detection of fruit surface defects.The decision tree algorithm is used to grade navel oranges.The experimental results show that the recognition accuracy of this method for extra-grade fruits,first-grade fruits,second-grade fruits and other external fruits reaches 96%,94%,94%and 96%respectively,with the grading rate of single conveyor lineis up to 3/s,and whose high accuracy and real-time can meet the requirements of grading detection of navel orange in real-time environment.
Keywords:Raspberry Pi  machine vision  navel orange grading  decision tree  integral image
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号