首页 | 本学科首页   官方微博 | 高级检索  
     

等离子体与Cu-Pd/S-1催化剂协同催化甲烷转化制低碳烯烃
引用本文:毕文菲,代成义,李雪梅,贺建勋,赵彬然,马晓迅.等离子体与Cu-Pd/S-1催化剂协同催化甲烷转化制低碳烯烃[J].化工进展,2022,41(1):227-236.
作者姓名:毕文菲  代成义  李雪梅  贺建勋  赵彬然  马晓迅
作者单位:西北大学化工学院,国家碳氢资源清洁利用国际科技合作基地,陕北能源先进化工利用技术教育部工程研究中心,陕西省洁净煤转化工程技术研究中心,陕北能源化工产业发展协同创新中心,陕西西安710069
摘    要:采用等体积浸渍法制备了Pd、Cu-Pd改性的S-1催化剂,利用介质阻挡放电(DBD)等离子体反应器研究了甲烷无氧转化制低碳烯烃(C2~C4=)的性能,重点关注了乙烯的产量。探讨了Ar的添加和特定输入能量(SIE)对甲烷转化率以及产物分布的影响。实验结果表明,等离子体与催化剂协同催化与仅使用等离子体相比性能更优异,使乙烯选择性提高了3.1倍,C2~C4=的选择性提高了2.7倍;与S-1相比,Pd/S-1具有更高的乙烯选择性,这是因为在S-1上负载金属Pd有助于乙炔原位加氢生成乙烯;适宜的Pd负载量有利于提高烯烃选择性,而过高的Pd负载量倾向于不饱和烃的连续加氢,导致了烷烃的生成;与单金属Pd改性相比,Cu-Pd双金属改性抑制了乙烯的进一步加氢,提高了乙烯的选择性。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高倍透射电子显微镜(HRTEM)、X射线粉末衍射(XRD)、X射线光电子能谱(XPS)对催化剂进行了表征分析。结果表明,Cu的加入使自身电子向Pd转移,增加了Pd电子密度;另外,Cu的存在提高了Pd的分散性。以2Cu-0.1Pd/S-1为催化剂时可以得到更优异的反应性能。

关 键 词:甲烷  加氢  催化  低碳烯烃  介质阻挡放电(DBD)反应器
收稿时间:2021-02-04

Synergistic catalysis of methane to light olefins by plasma and Cu-Pd/S-1 catalyst
BI Wenfei,DAI Chengyi,LI Xuemei,HE Jianxun,ZHAO Binran,MA Xiaoxun.Synergistic catalysis of methane to light olefins by plasma and Cu-Pd/S-1 catalyst[J].Chemical Industry and Engineering Progress,2022,41(1):227-236.
Authors:BI Wenfei  DAI Chengyi  LI Xuemei  HE Jianxun  ZHAO Binran  MA Xiaoxun
Affiliation:School of Chemical Engineering, Northwest University; International Science and Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advance Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; Collaborative Innovation Center for Shanbei Energy and Chemical Industry Development, Xi’an 710069, Shaanxi, China
Abstract:The Pd or Cu-Pd modified S-1 catalyst was prepared by an equivalent volume impregnation method. A dielectric barrier discharge (DBD) plasma reactor was used to study the nonoxidative conversion of methane to light olefins (C2—C4=), focusing on the production of ethylene. The effects of the Ar addition and specific input energy (SIE) on methane conversion and product distribution were investigated. The experimental results showed that the catalytic performance of plasma-catalyst cooperation was better than that of plasma-only mode. The selectivity of ethylene was increased by a factor of 3.1 and the selectivity of C2—C4= was increased by a factor of 2.7. Compared with S-1, Pd/S-1 provided higher ethylene selectivity. This is because the metal Pd supported on S-1 promoted the in-situ hydrogenation of acetylene to ethylene. The suitable Pd loading was beneficial towards achieving higher olefins selectivity, while excessive Pd loading caused continuous hydrogenation of unsaturated hydrocarbons so that the production was alkanes. Compared with single metal Pd modification, Cu-Pd bimetal modification inhibited further hydrogenation of ethylene and improved the selectivity of ethylene. The catalysts were characterized by using SEM, TEM, HRTEM, XRD, XPS. The results showed that the addition of Cu transferred its own electrons to Pd, which increased the electron density of Pd. In addition, the presence of Cu improved the dispersibility of Pd. Better reaction performance were obtained with the 2Cu-0.1Pd/S-1 catalyst.
Keywords:methane  hydrogenation  catalysis  light olefins  dielectric barrier discharge (DBD) reactor  
本文献已被 万方数据 等数据库收录!
点击此处可从《化工进展》浏览原始摘要信息
点击此处可从《化工进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号