摘 要: | 针对无人机检测缺陷绝缘子时,存在目标特征不明显、小目标检测效果差、无法同时满足检测速度和精度的问题,提出一种基于改进YOLOv5的绝缘子缺陷检测算法。首先,针对目标特征不明显的问题,将ConvNeXt网络应用到YOLOv5主干网络中,以加强网络特征提取能力;其次,针对图像中的小目标特征,在主干网络中引入坐标注意力机制,提高对小目标的检测精度;然后,对改进模型进行剪枝操作,剪去模型中冗余的通道,从而减少模型参数量,使模型更加轻量化。实验结果表明:所提算法在绝缘子缺陷数据集IDID上的平均精度均值达到93.84%,较原始算法提升了3.4个百分点;检测速率达到166 frame/s,较原算法速率提升了69.4%,可以满足对输电线路实时检测的要求。
|